Image Regression using .mat Files and a datastore

22 次查看(过去 30 天)
I would like to train a CNN for image regression using a datastore. My images are stored in .mat files (not png or jpeg). This is not image-to-image regression, rather an image to single regression label problem. Is it possible to do this using a datastore, or at least some other out-of-memory approach?

采纳的回答

luisa di monaco
luisa di monaco 2019-12-7
编辑:luisa di monaco 2020-1-2
I have solved something similar.
I'm trying to train a CNN for regression. My inputs are numeric matrices of size 32x32x2 (each input includes 2 grayscale images as two channels). My outputs are numeric vectors of length 6.
500 000 is the total amount of data.
I created 500 000 .mat file for inputs in folder 'inputData' and 500 000 .mat file for target in folder 'targetData'. Each .mat file contains only 1 variable of type double called 'C'.
The size of C is 32x32x2 (if input) or 1x6 (if target).
inputData=fileDatastore(fullfile('inputData'),'ReadFcn',@load,'FileExtensions','.mat');
targetData=fileDatastore(fullfile('targetData'),'ReadFcn',@load,'FileExtensions','.mat');
inputDatat = transform(inputData,@(data) rearrange_datastore(data));
targetDatat = transform(targetData,@(data) rearrange_datastore(data));
trainData=combine(inputDatat,targetDatat);
% here I defined my network architecture
% here I defined my training options
net=trainNetwork(trainData, Layers, options);
function image = rearrange_datastore(data)
image=data.C;
image= {image};
end
  18 个评论
Fadhurrahman
Fadhurrahman 2022-1-6
编辑:Fadhurrahman 2022-1-6
hello @luisa di mona how did you create all 50000 mat files with 32x32? is there any refrence to do it?
luisa di monaco
luisa di monaco 2022-1-6
Hi,
the creation process was part of my thesis work. Here you can download my thesis:
http://webthesis.biblio.polito.it/id/eprint/14716 . Dataset creation is described in chapter 4 (4.2, 4.3 and 4.5) .
Here you can find some Matlab code: https://github.com/lu-p/standard-PIV-image-generator
I hope this can help.

请先登录,再进行评论。

更多回答(2 个)

Johanna Pingel
Johanna Pingel 2019-4-29
编辑:Johanna Pingel 2019-4-29
I've used a .mat to imagedatastore conversion here:
imds = imageDatastore(ImagesDir,'FileExtensions','.mat','ReadFcn',@matRead);
function data = matRead(filename)
inp = load(filename);
f = fields(inp);
data = inp.(f{1});
  2 个评论
Matthew Fall
Matthew Fall 2019-4-29
Thank you for your swift reply.
Unfortunately, the matlab regression example requires loading all of the training and validation data in memory, which I want to avoid by using the datastore.
I've tried using the imageDatastore with regression labels before, but then trainNetwork gives me the error:
Error using trainNetwork (line 150)
Invalid training data. The labels of the ImageDatastore must be a categorical vector.
tianliang wang
tianliang wang 2021-4-28
Is it more convenient to use mat files as the training set for the images to vectors regression ?

请先登录,再进行评论。


Lykke Kempfner
Lykke Kempfner 2019-8-16
I have same problem.
I have many *.mat files with data that can not fit in memory. You may consider the files as not standard images. I have the ReadFunction for the files. I wish to create a datastore (?) where each sample are associated with two single values and not a class.
Are there any solution to this issue ?

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by