here is my code but even after writing it and getting the results I still don't understand what does the numbers mean or interpret for X, Y, and AUC!! and on what bases did we choose to assign the ones and zeros for the labels and if I flip will I get different results!! plz advice
labels = {'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'can-';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'ecan+';'dcan+';'dcan+';'dcan+';'dcan+';'dcan+';'dcan+';'dcan+';'dcan+';'dcan+';'dcan+';'dcan+';'dcan+'};
data= [Data_normal; BB; CC ]; % the first group for normal people then people with early disease and finally with severe disease
x1= data((1:132),:); %combinations of can- and ecan+
x2= data([1:70 133:144],:); %combinations of can- and dcan+
x3= data((71:end),:); %combinations of ecan+ and dcan
y1 = (1:132)'>70; %% can- =0, ecan+ =1
y2 = (1:82)'>70; %% can- =0, dcan+ =1
y3 = (1:74)'>62; %% ecan+ =0, dcan+ =1
b1 = glmfit(x1,y1,'binomial');
b2 = glmfit(x2,y2,'binomial');
b3 = glmfit(x3,y3,'binomial');
p1 = glmval(b1,x1,'logit');
p2 = glmval(b2,x2,'logit');
p3 = glmval(b3,x3,'logit');
[X1,Y1,T1,AUC1] = perfcurve(labels((1:132),:),p1,'ecan+');
[X2,Y2,T2,AUC2] = perfcurve(labels([1:70 133:144],:),p2,'dcan+');
[X3,Y3,T3,AUC3] = perfcurve(labels((71:end),:),p3,'dcan+');
figure(1)
plot(X1,Y1)
xlabel('False positive rate'); ylabel('True positive rate')
title('ROC for classification by logistic regression')
figure(2)
plot(X2,Y2)
xlabel('False positive rate'); ylabel('True positive rate')
title('ROC for classification by logistic regression')
figure(3)
plot(X3,Y3)
xlabel('False positive rate'); ylabel('True positive rate')
title('ROC for classification by logistic regression')