Solving Equations of motion with ode15s
2 次查看(过去 30 天)
显示 更早的评论
Recently I am trying to solve a system of equations with ode15s. The goal is to calculate the Ascent trajectory of a Rocket with a control variable alpha, which is the angle between the velocity vector v and the thrust vector, so that by changing alpha manually I should change the flight direction.
%Thrust vector control variable
alpha=(-2*pi/180)
%alpha=(-2*pi/180)*t+10
%alpha=0.5*(-2*pi/180)*t^2+10*t+0.01...assumed to be konstant/linear/quadratic[rad]
%functions
gh=g0*((re/h)^2);%Gravi*tationsbeschleunigung abh. von h
rhoh=rho0*exp(-h/sh);%Luftdichte abh. von h
%EoM
dydt=(thrust*sin(alpha)/m*v)-(v*cos(y)/h)-gh*cos(y);
dvdt=(thrust*cos(alpha)/m)-gh*sin(y)-(rhoh*Adrag*(v^2)/2*m);
dhdt=v*sin(y);
dxddt=(re/h)*v*cos(y);
dmdt=-propflow;
dwdt=(1/Ix)*thrust*sin(alpha)*rs;
in a first run I assume alpha to be konstant and I experimented a little bit with the value (so for example alpha=-2*... and in the next run alpha= +10*...). In a next step I assumed alpha to be linear so for example
alpha=(-2*pi/180)*t+10
and in a last step I assumed it to be quadratic:
alpha=0.5*(-2*pi/180)*t^2+10*t+0.01
I am using ode15s to solve the equations, because my code needs to include the algebraic variable t.
I plotted the results over t and I receive the exact same plots for every single run, regardless of alpha being konstant linear or quadratic.
How is that possible?
11 个评论
Torsten
2019-5-6
And the values you get for the variables look realistic to you ? E.g. a velocity of 12000 m/s ?
I suggest you reinspect your equations first before going into details about the setting of "alpha".
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!