Why accept Matlab no vector as a response when I use CNN with residual connection?

1 次查看(过去 30 天)
I train my own CNN model like this tutorial:
but I need no classification layer at the end my neural network, but regression layer. That's why I need to define a vector for each sample. All in all, I have to train a matrix(40*num_of_samples), which must be converted into a 4D array like this tutorial:
I get this error:
Invalid validation data. Y must be a vector of categorical responses.
Does someone know how I can fix this?
  3 个评论
Osama Tabbakh
Osama Tabbakh 2019-5-29
Let say this is my input images:
X_Train(:,:,3,3000) = rand(100);
my outputs are defined like this:
Y_4D_train=randn(1,1,40,3000);
and the data for validation:
X_Val(:,:,3,1000) = rand(100);
Y_4D_Val =randn(1,1,40,1000);
and then I did like the tutorial:
imageSize = [100 100 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(imageSize,X_Train,Y_4D_train, ...
'DataAugmentation',imageAugmenter, ...
'OutputSizeMode','randcrop');
...
...
At the end:
trainedNet = trainNetwork(augimdsTrain,lgraph,options);

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

产品


版本

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by