Unexpected image size: All images must have the same size.

20 次查看(过去 30 天)
Hi, I'm having some problems with a bench of chest xray images. I tryed to use the code from the link below, but it did not work.
Error using trainNetwork (line 165)
Unexpected image size: All images must have the same size.
Error in chestXray1 (line 49)
net = trainNetwork(imdsTrain,layers,options);
inputSize = [224 224 1];
numClasses = 2;
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',3, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
  8 个评论
Geoff Hayes
Geoff Hayes 2019-7-9
try putting a breakpoint at the line
allfiles = fullfile({dinfo.folder}, {dinfo.name});
and then run the code. When the debugger pauses at thisline, step through the subsequent lines. What is thisfile set to? What is thisinfo?

请先登录,再进行评论。

采纳的回答

Dheeraj Singh
Dheeraj Singh 2019-8-5
You can use augmentedImageDataStore to resize all images to same size.
Use the following code for your problem:
dataChest = fullfile('/Users/andrebr4/Documents/MATLAB/chestXray/chest_xray');
imds = imageDatastore(dataChest, ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
%% Dividir o conjunto de dados em cada categoria
numTrainingFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainingFiles,'randomize');
%%%%%%%code for resizing
inputSize=[224 224 1];
imdsTrain=augmentedImageDatastore(inputSize, imdsTrain,'ColorPreprocessing','rgb2gray');
imdsValidation=augmentedImageDatastore(inputSize, imdsValidation,'ColorPreprocessing','rgb2gray');
%% Configurar a rede neural
inputSize = [224 224 1];
numClasses = 2;
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
%% Opções de treino
options = trainingOptions('sgdm', ...
'MaxEpochs',5, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
%% Treinar a rede neural
net = trainNetwork(imdsTrain,layers,options);
%% Executar rede treinada no conjunto de teste
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
%% Calcular a precisão
accuracy = sum(YPred == YValidation)/numel(YValidation)

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

产品


版本

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by