Straightening Image from RF data

3 次查看(过去 30 天)
I have created an image in matlab from a set of data which I obtained experimentally. The issue I have is the tissue which I imaged is curved as it floats in water, this is seen the image I have.
I wrote a code to threshold the image so that it straightnes out but it does not seem to solve the problem. The thresholding just pushes the image on to the top and does not seem to do well.
Could you please give me some tips to solve this problem. The image screen shot and the thresholding technique I am using is shown below:
section = input('Size of each tissue section (mm): ');
sectionrows = (section*(rsize))/(newdepth);
sectionrows=round(sectionrows);
nsections = (sectionrows);
nsections =round(nsections);
reducedrsize = ceil(rsize/nsections);
remainder = mod(rsize,nsections);
Row = zeros(reducedrsize,colsize);
threshold =0.02;
newimage = zeros(rsize,colsize);
for j= 1:colsize
k = find(hil1(:,j)>threshold);
rowindex = min(k);
newimage(1:rsize-rowindex+1,j) = hil1(rowindex:end,j);
for i = 1:reducedrsize-1
Row(i,j)=max(hil1((i-1)*nsections+1:(i*nsections),j));
end
end
Sorry I cant seem to load the image here.
  2 个评论
Image Analyst
Image Analyst 2012-9-1
编辑:Image Analyst 2012-9-1
That's no good. We'd first have to do color segmentation. Just simply upload the pure gray scale image. I don't want pseudocoloring, tick marks, etc. Nothing except your original monochrome image.
Anyway, WHY does it need to be straightened? I bet you could make the measurements you need even though the tissue is curved. What do you want to measure? Length, area, intensity, or something else?

请先登录,再进行评论。

采纳的回答

Image Analyst
Image Analyst 2012-9-1
编辑:Image Analyst 2012-9-1
Do you have a calibration from RF signal to kilograms, and from pixels to µm? And are you sure you really need to straighten the thing? Why isn't just going column by column enough? If you did, I'd probably start by thresholding and then going column by column to get the midpoint, like this code:
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures.
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.
format longg;
format compact;
fontSize = 20;
% Read in a gray scale demo image.
folder = 'C:\Users\Srikanta\Documents';
baseFileName = 'tissue.png';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
% File doesn't exist -- didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
grayImage = imread(fullFileName);
% Crop it.
grayImage = rgb2gray(imcrop(grayImage, [90 140 400 110]));
% Get the dimensions of the image.
% numberOfColorBands should be = 1.
[rows columns numberOfColorBands] = size(grayImage);
% Display the original gray scale image.
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Grayscale Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Give a name to the title bar.
set(gcf,'name','Demo by ImageAnalyst','numbertitle','off')
% Let's compute and display the histogram.
[pixelCount grayLevels] = imhist(grayImage);
% Suppress the 0 bin:
pixelCount(1) = 0;
subplot(2, 2, 2);
bar(pixelCount);
grid on;
title('Histogram of original image', 'FontSize', fontSize);
xlim([0 grayLevels(end)]); % Scale x axis manually.
% Get the binary image
binaryImage = grayImage > 10;
% Display the original gray scale image.
subplot(2, 2, 3);
imshow(binaryImage, []);
title('Binary Image', 'FontSize', fontSize);
% Smooth it out some and clean it up.
binaryImage = imclose(binaryImage, true(5));
binaryImage = imfill(binaryImage, 'holes')
subplot(2, 2, 4);
imshow(binaryImage, []);
title('Cleaned Binary Image', 'FontSize', fontSize);
% Get the midpoints
topRow = zeros(columns, 1);
bottomRow = zeros(columns, 1);
midpoints = zeros(columns, 1);
for column = 1 : columns
oneColumn = binaryImage(:, column);
if sum(oneColumn) > 0
topRow(column) = find(binaryImage(:, column), 1, 'first');
bottomRow(column) = find(binaryImage(:, column), 1, 'last');
midpoints(column) = (topRow(column) + bottomRow(column)) / 2;
end
end
hold on;
plot(1:columns, midpoints, 'r-', 'LineWidth', 2);
After that it gets tricky, though I've done it. You can go along the midpoint curve fitting a short stretch of it to a slowly varying curve and take perpendicular lines to get the profile. I posted code for that here just within the last two months or so.
  3 个评论
Image Analyst
Image Analyst 2012-9-2
Try this code. It now works with your second image. It's like the first code except that the cropping is different (I'm not sure why you can't upload just the image and not the figure with tick marks and axes lines), and it also measures the average width of the tissue and gives the average gray level (RF Signal) along the spine.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.
format longg;
format compact;
fontSize = 20;
% Read in a standard MATLAB gray scale demo image.
folder = 'C:\Users\Mark\Documents\Temporary';
baseFileName = 'tissue1.png';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
% File doesn't exist -- didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
grayImage = imread(fullFileName);
% Display the original RGB image.
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Grayscale Image', 'FontSize', fontSize);
% Convert it to gray scale and Crop it.
grayImage = rgb2gray(grayImage);
grayImage = imcrop(grayImage, [74 84 425 240]);
% Get the dimensions of the image.
% numberOfColorBands should be = 1.
[rows columns numberOfColorBands] = size(grayImage);
% Display the cropped gray scale image.
subplot(2, 2, 2);
imshow(grayImage, []);
title('Cropped Grayscale Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Give a name to the title bar.
set(gcf,'name','Demo by ImageAnalyst','numbertitle','off')
% Let's compute and display the histogram.
[pixelCount grayLevels] = imhist(grayImage);
% Suppress the 0 bin:
pixelCount(1) = 0;
subplot(2, 2, 3);
bar(pixelCount);
grid on;
title('Histogram of original image', 'FontSize', fontSize);
xlim([0 grayLevels(end)]); % Scale x axis manually.
% Get the binary image
binaryImage = grayImage > 10;
% Display the original gray scale image.
subplot(2, 2, 4);
imshow(binaryImage, []);
title('Binary Image', 'FontSize', fontSize);
% Smooth it out some and clean it up.
binaryImage = imclose(binaryImage, true(5));
binaryImage = imfill(binaryImage, 'holes');
figure;
subplot(2, 2, 1);
imshow(binaryImage, []);
title('Cleaned Binary Image', 'FontSize', fontSize);
% Find and keep just the largest blob.
labeledImage = bwlabel(binaryImage);
measurements = regionprops(labeledImage, 'area');
allAreas = [measurements.Area];
[sortedAreas indexes] = sort(allAreas, 'descend');
% Get justthe largest blob.
largestBlob = ismember(labeledImage, indexes(1));
binaryImage = largestBlob > 0; % Binarize the labeled image.
subplot(2, 2, 2);
imshow(binaryImage, []);
title('Cleaned Binary Image', 'FontSize', fontSize);
% Get the midpoints
topRow = zeros(columns, 1);
bottomRow = zeros(columns, 1);
midpoints = zeros(columns, 1);
for column = 1 : columns
oneColumn = binaryImage(:, column);
if sum(oneColumn) > 0
topRow(column) = find(binaryImage(:, column), 1, 'first');
bottomRow(column) = find(binaryImage(:, column), 1, 'last');
midpoints(column) = (topRow(column) + bottomRow(column)) / 2;
end
end
hold on;
% Get rid of points that are not in the object.
x = 1:columns;
noObjectIndexes = midpoints == 0;
midpoints(noObjectIndexes) = [];
x(noObjectIndexes) = [];
plot(x, midpoints, 'r-', 'LineWidth', 2);
% Now show over original image
% Display the cropped gray scale image.
subplot(2, 2, 3);
imshow(grayImage, []);
title('Cropped Grayscale Image', 'FontSize', fontSize);
hold on;
plot(x, midpoints, 'r-', 'LineWidth', 2);
% Now make measurements.
area = sum(binaryImage); % Blob area in pixels.
% Calculate the Euclidean distance transform.
edt = bwdist(~binaryImage);
subplot(2, 2, 4);
imshow(edt, []);
title('Euclidean distance transform', 'FontSize', fontSize);
% Get the half-widths by extracting the EDT along the spine.
% Compute the average RF gray level of the original image along the spine also.
numberOfPoints = length(midpoints);
halfWidths = zeros(numberOfPoints, 1);
sumOfGrayLevels = 0;
for k = 1 : numberOfPoints
row = int32(midpoints(k));
col = int32(x(k));
halfWidths(k) = edt(row, col);
sumOfGrayLevels = sumOfGrayLevels + double(grayImage(row, col));
end
averageWidth = 2 * mean(halfWidths);
averageGrayLevel = sumOfGrayLevels / numberOfPoints;
message = sprintf('The average width = %.4f\nThe average RF signal along the spine = %.4f\n', averageWidth, averageGrayLevel)
uiwait(msgbox(message));
Image Analyst
Image Analyst 2012-9-3
You have the midpoint row. To get the column of the image above that, just do
upperPartOfColumn = grayImage(1:midpoints(columnNumber), columnNumber);

请先登录,再进行评论。

更多回答(1 个)

Darshan
Darshan 2013-4-3

类别

Help CenterFile Exchange 中查找有关 Image Processing Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by