plotting eigen vectors (nomal modes ) of a 9x9 matrix
2 次查看(过去 30 天)
显示 更早的评论
I have a matlab code for solving eigenvalues and eigenvectors problems but the ways is that i can normally plot differents eigenvalues of my matrix which depend on the varible x=-1:1. My problem is that I don't know how to plot in 3D the corresponding eigenvectors ( ie xlabel: x=-1:1, ylabel: y=-1:1 and Zlabel: z=eigenvectors )
This the correpondint code :
close all;clear all; U =0.9; f= 39; nx=f;T=1;
x=-3.086476993000499:3.096476993000599; y=x;
A=zeros(nx,nx); B=zeros(nx,nx); mat=zeros(nx,nx);
for kappa=1:numel(x) % nu=1:f-1
Rep = T.*(2.0.*cos(x(kappa)/2.0).*cos(x(kappa).*f/2.0)); Imp = 0.0;
Req = T.*(1.0 + cos(x(kappa))); Imq = T.*(sin(x(kappa)));
A(1,1)=U ; A(1,2)=sqrt(2.0)*Req; A(2,1)=sqrt(2.0)*Req;
B(1,2)=sqrt(2.0)*Imq; B(2,1)=-sqrt(2.0)*Imq;
for i=2:nx-1
A(i,i+1)=Req; A(i+1,i)=Req ;B(i,i+1)=Imq; B(i+1,i)=-Imq;
end
A(nx,nx)=Rep ; B(nx,nx)=Imp;
for i=nx:-1:1
for j=nx:-1:1
mat(i,j)=A(i,j);
mat(i,j+nx)=B(i,j);
mat(i+nx,j)=-B(i,j);
mat(i+nx,j+nx)=A(i,j);
end
end
[v,d0] = eig(mat); % eigenvectors and eigenvalues
%vv=v(:,kappa) ; v0=vv/norm(vv); C0=v0.*v0 % give us \c0\^2
dd=d(:,kappa); d0=dd/norm(dd); z=d0*d0' ; surf(z);
%d0(kappa,:)=eig(mat); for eigenvalue only
end
% plot(d0,'r-');
0 个评论
回答(1 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Operating on Diagonal Matrices 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!