Solving system of ODEs
3 次查看(过去 30 天)
显示 更早的评论
I have a system of DEs similar to the following:
If the variable Z is not present (i.e. eq (3) also), then I can solve it using ode45 command.
But the availability of Z is creating problem for me. To get the value of Z at time t, we have to solve the ODE (3) from time 0 to \tau, then we have to put that value of Z in equation (2), for evey instance 't'.
The main problem is, while solving DE using ode45, at any instance t, MATLAB uses the values of variables at that instance only. But here we require values of variables at time (t-\tau) to use at time t.
Please help me to solve the problem. Thanks in advance.
2 个评论
回答(2 个)
darova
2019-7-29
编辑:darova
2019-7-29
What if just solve 2 systems?
First one (t <= tau) with initial conditions: X(0) = X0, Y(0) = Y0
[t, Var] = ode45(...); % ODE solve
X= Var(:,1);
Y= Var(:,2);
x0 = X(end); % initial conditions for 2d system
y0 = Y(end);
Second (t >= tau) with Z(tau) = Z0 (X and Y initial conditions give from the first solution)
What do you think about my idea?
Steven Lord
2019-7-29
I only skimmed your problem but it looks like when Z is not present, you have a set of ordinary differential equations. Once Z comes into the picture, you no longer have a set of ordinary differential equations. Your equations are now delay differential equations. Use the ODE solvers to solve the system until t reaches tau, then use the DDE solvers (like dde23 or ddesd) to solve the system using the results from the ODE solvers as the history.
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!