Nan problem ( validation loss and mini batch loss) in Transfer Learning with Googlenet

1 次查看(过去 30 天)
I am trying to use Googlenet for transfer Learning on a data set ( Images) , with three classes as output. I am using the same script that has been used successfully with ResNet50 before. As both networks shares the same input layer ( 224 224 3) ,I thought it would be easy to do another test on the same data set using Google net . Neither using Deep Network Designer nor editing the original Googlenet ( substituting the last layers ) by script have helped to avoid getting the same error that is :
after the first iteration both the mini batch loss and the validation loss go to NAN .
I think I am missing something here as it doesnt make sense to me .
I have attached the script plus a screen shot of the output that shows the Nan .
augmenter = imageDataAugmenter(...
'RandRotation',[0 15]);
path = fullfile('C:\','Big J','My Exp','training');
imds=imageDatastore(path,'IncludeSubfolder',true,'LabelSource','Foldernames');
inputSize=[224 224];
imds.ReadFcn = @(loc)imresize(imread(loc),inputSize);
[TrainDataStore,ValDataStore] = splitEachLabel(imds,0.8,'randomize');
Traindatasource = augmentedImageSource([224 224],TrainDataStore,'DataAugmentation',augmenter);
%%
net=googlenet;
lgraph = layerGraph(net);
lgraph = removeLayers(lgraph, {'loss3-classifier','prob','output'});
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);plot(lgraph);
newLayers = [
fullyConnectedLayer(3,'Name','fc-3','WeightLearnRateFactor',20,'BiasLearnRateFactor', 20) % increase the learning factor of FC layer to speed up learning
softmaxLayer('Name','softmax')
classificationLayer('Name','classoutput')];
lgraph = addLayers(lgraph,newLayers);
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);plot(lgraph);
lgraph = connectLayers(lgraph,'pool5-drop_7x7_s1','fc-3');
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);plot(lgraph);
%%
options = trainingOptions('sgdm',...
'ExecutionEnvironment','gpu',...
'InitialLearnRate',0.01,...
'L2Regularization', 0.0001,...
'MaxEpochs',15,...
'MiniBatchSize',32,...
'Momentum',0.9,...
'Shuffle','once',...
'Verbose',1,...
'VerboseFrequency',50,...
'ValidationData',ValDataStore,...
'ValidationFrequency',50,...
'ValidationPatience',Inf,...
'Plots','training-progress' );
%%
net = trainNetwork(Traindatasource,lgraph,options);
%%
G_net_test =net;
save('G_net_test.mat', 'G_net_test');
error.jpg

采纳的回答

caesar
caesar 2019-8-9
thanks to Matlab support team, the problem was the learning rate. once i changed it from 0.01 to 0.001 it went through as expected

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 GPU Computing 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by