How to find eigenvalues for a system of lenearized ordinary differential equations?

14 次查看(过去 30 天)
I have a system of linearized ODEs with corresponding boundary conditions.
%----------------------------system of ODEs--------------------------------------%
y'(1)=y(2)
y'(2)=y(3)
y'(3)=(phi./Da).*y(2)+(2.*phi.*Fr./A1).*fd.*y(2)-(fd1.*1./A1).*y(3)-(fdd.*1./A1).*y(1)+(2.*fd.*1./A1).*y(2)-(e./A1).*y(2)-(phi.*Ra./(A1^2).*A2).*y(4)
y'(4)=y(5)
y'(5)=-(Pr./A2).*(fd.*y(5)+thd.*y(1)+e.*y(4))];
%---------------------------boundary conditions----------------------------------%
y(1)=y(2)=y(4)=0 at eta=0
y(2)=y(4)=0 at eta=0;
here Pr phi Ra Da Fr A1 A2 fd1 fd fdd thd are known quantities and 'e' is unknown.
I need to solve the system to find out the eigenvalues (e).
Thanks in advance.

采纳的回答

Pavel Osipov
Pavel Osipov 2019-10-5
Tanya, hi.
write so:
dyi/dt =...y1 (t)+...y2 (t)+...+y5(t);
let x (t)=[y1;y2;...;y5]; ->
((V/ve) x=Ah; A - matrix coeff. Your system. Let's formally denote d/dt=p
px-Ax=0; - > (p*E-A) x=0; since x is not 0, then
det(p*E-A)=0. This is the equation for the eigenvalues of p.
  2 个评论
Tanya Sharma
Tanya Sharma 2019-10-9
The unkown 'e' is already in the equations y'(3) and y'(4). I want to find all the possible eigenvalues 'e' for this problem. Can you explain again?
Thanks in advance.
Poly
Poly 2022-3-10
Hello Tanya!! I don't know whether you get the code right or not? but can you share the code if possible

请先登录,再进行评论。

更多回答(2 个)

Pavel Osipov
Pavel Osipov 2019-10-9
Hi!
det(p*E-A)=0. This is the equation for the eigenvalues of p. - -> The unkown "p" is solution det(p*E-A)=0. det - is the determinant with dimensions 5x5.
px-Ax=0 ->Ax=px, p is eigenvalues of A MATLAB command [V,D] = eig(A) returns diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that A*V = V*D. (from MATLAB help).
eigenvalues p is 5x1 vector = liagonal elements D. eigenvectors of A see at columns V.
  1 个评论
Tanya Sharma
Tanya Sharma 2019-10-21
Thanks Pavel!
But this will give me only five eigenvalues. As I am solving the eigenvalue of a differential equation and it can have many eigenvalues.
I am attaching the linearized eigenvalue problem. Is there a way I can find the unknown eigenvalues?

请先登录,再进行评论。


Pavel Osipov
Pavel Osipov 2019-11-24
Answ1.JPG
Answ2.JPG
See attachment

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by