Threshold For confidence score

2 次查看(过去 30 天)
Hi Guys
I would like if possible how to make this Threshold for Evaluation and validation of created R-CNN object Detector, i tried to make it in the attached scripts but it does not work, I want to make Threshold for score that like below 0.58 that score and bboxes should not be appeared in results
i tried the below code but i got the error
Herein the code:-
load('gTruth.mat')
smokedetection = selectLabels(gTruth,'alarm');
if ~isfolder(fullfile('EvaluationData'))
mkdir EvaluationData
addpath('EvaluationData');
evaluationData = objectDetectorTrainingData(gTruth,...
'SamplingFactor',1,'WriteLocation','EvaluationData');
end
imds = imageDatastore(fullfile('EvaluationData'));
numImages = height(evaluationData);
result(numImages,:) = struct('Boxes',[],'Scores',[]);
for i = 1:numImages
% Read Image
I = readimage(imds,i);
% Detect the object of interest
[bboxes, scores] = detect(detector,I,'MiniBatchSize', 32);
% Store result
result(i).Boxes = bboxes;
T = 0.58; % Define threshold here
idx = scores >= T;
result(i).Scores = scores(idx);
end
% Convert structure to table
results = struct2table(result);
overlap = 0.1;
% Evaluate Metrics
[ap,recall,precision] = evaluateDetectionPrecision(results...
,evaluationData(:,2),overlap);
[am,fppi,missRate] = evaluateDetectionMissRate(results,evaluationData(:,2),overlap);
% and herein the error i got
Error using vision.internal.detector.evaluationInputValidation>checkDetectionResultsTable (line 66)
Invalid score value in row 1 of the detection results table: Expected input to be an array with number of
elements equal to 8.
Error in vision.internal.detector.evaluationInputValidation (line 6)
checkDetectionResultsTable(detectionResults, groundTruth, mfilename);
Error in evaluateDetectionPrecision (line 94)
vision.internal.detector.evaluationInputValidation(detectionResults, ...
Error in Evaluationthedetector (line 33)
[ap,recall,precision] = evaluateDetectionPrecision(results...
% Looking for your assistance

回答(1 个)

Harsha Priya Daggubati
Hi,
I suspect the issue is due to the threshold you are using, try storing the bounding boxes in results based on the threshold.
T = 0.58; % Define threshold here
idx = scores >= T;
result(i).Boxes = bboxes(idx);
result(i).Scores = scores(idx);
Hope this helps!

类别

Help CenterFile Exchange 中查找有关 Denoising and Compression 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by