Delay differential equation of glucose insulin model

4 次查看(过去 30 天)
%% Minimal Glucose dde model
% Name: Aniruddha
% Date: 16.10.2019
% delay differential equation:
% DDE1
% dG(t)/dt= Gin-f2(G(t))-f3(G(t))f4(I(t))+f5(I(t-T2))
% d(I)/dt=f1(G(t))-I(t)/t1
% DDE2
%dG(t)/dt= Gin-f2(G(t))-f3(G(t))f4(I(t))+f5(I(t-T2))
% d(I(t))/dt= Qf1(G(t))-I(t)/t1 +(1-Q)f1(G(t-T1)
%f1(G)=209/(1+e^(-G/300V3 +6.6)
%f2(G)=72(1-e^(-G/144V3))
%f3(G)=0.01G/V3
%f4(I)=[90/(1+e^(-1.772log(I/V1) + 7.76))] +4
%f5(I)=180/(1+e^(0.29I/V1 -7.5))
%Mapping: G(t)=y(1), I(t)=y(2) I1(t)=y(3)
%% clean up:
clc;clear all;
%% parameter values:
p.V1=3;
p.Gin=216
p.Q=0.5;
p.t1=6;
p.V3=10;
p.T2=50;
p.Eg=180;
p.T1=5;
lags=[p.T1 p.T2];
tf=5;
sol=dde23(@ddemodel,lags,[0,tf]);
t=linspace(0,tf,100);
y=ddeval(sol,t);
figure;
plot(t,y)
function dX=ddemodel(t,y,p)
G=y(1);
I=y(2);
I1=y(3);
f1=@(G) 209/(1+e^(-G/300*p.V3 +6.6));
f2=@(G) 72*(1-e^(-G/144*p.V3));
f3=@(G) 0.01*G/p.V3;
f4=@(I) [90/(1+e^(-1.772*log(I/p.V1) + 7.76))] +4;
f5=@(I) 180/(1+e^(0.29*I/p.V1 -7.5));
dG(t)/dt= p.Gin-f2(G)-f3(G)*f4(I)+f5(I(t-p.T2));
d(I)/dt=f1(G)-I(t)/p.t1;
d(I1(t))/dt= p.Q*f1(G)-I(t)/p.t1 +(1-p.Q)*f1(G(t-T1))
df=[dG dI dI1]';
end

回答(1 个)

Stephan
Stephan 2019-10-27
Another try, after reading a little bit about dde's:
[t,y] = delayed;
% plot results
subplot(3,1,1)
plot(t,y(1,:),'LineWidth',2)
title('G(t)')
subplot(3,1,2)
plot(t,y(2,:),'LineWidth',2)
title('I(t)')
subplot(3,1,3)
plot(t,y(3,:),'LineWidth',2)
title('I1(t)')
%% solve system
function [t,y] = delayed
% parameter values:
p.V1=3;
p.Gin=216;
p.Q=0.5;
p.t1=6;
p.V3=10;
p.T2=50;
p.Eg=180;
p.T1=5;
lags=[p.T1 p.T2];
tf=5;
sol=dde23(@ddemodel,lags,zeros(3,1),[0,tf]);
t=linspace(0,tf,100);
y=deval(sol,t);
function df=ddemodel(~,y,lags)
df = zeros(3,1);
% functions
G=y(1);
I=y(2);
I1=y(3);
f1=@(G) 209/(1+exp(-G/300*p.V3 +6.6));
f2=@(G) 72*(1-exp(-G/144*p.V3));
f3=@(G) 0.01*G/p.V3;
f4=@(I) 90/(1+exp(-1.772*log(I/p.V1) + 7.76)) +4;
f5=@(I) 180/(1+exp(0.29*I/p.V1 -7.5));
df(1) = p.Gin-f2(G)-f3(G)*f4(I)+f5(lags(2));
df(2) =f1(G)-I/p.t1;
df(3) = p.Q*f1(G)-I/p.t1 +(1-p.Q)*f1(lags(1));
end
end
gives the following result:
dde_model.PNG
I think this may be a bit more helpful. If not let me know - but also let me know if it helps...

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by