How to plot a "goal" into my plot?

2 次查看(过去 30 天)
This is only to do something cool in the plot but I am plotting the trajectory of a soccer ball and I thought it would be cool to plot a "goal" (a rectangle) into the figure since I have a green surface that looks like a field already.
My code is the following:
%% Constants
t = linspace(0, 10, 1000);
m = 0.4; %mass (kg)
g = 9.8; %gravitational accel. (m/s.^2)
b = 0.44; %drag coefficient
w_1 = 1.5; %Angular Velocity
w_2 = 1; %Angular Velocity
w_3 = 0.5; %Angular Velocity
%% w_1
x_t_1 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_1 = (g.*m.*t.*w_1)./(b.^2 + w_1.^2) - (171.*b.^2.*m.*w_1)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (171.*m.*w_1.^3)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (2.*b.*g.*m.^2.*w_1)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*m.*w_1.^3.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.^2.*m.*w_1.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.*m.*w_1.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (g.*m.^2.*w_1.^2.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (2.*b.*g.*m.^2.*w_1.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4);
z_t_1 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.*m.*w_1.^2)./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (g.*m.^2.*w_1.^2)./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) - (b.*g.*m.*t)./(b.^2 + w_1.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*m.*w_1.^3.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (171.*b.*m.*w_1.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) + (171.*b.^2.*m.*w_1.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(20.*(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (g.*m.^2.*w_1.^2.*exp(-(b.*t)./m).*cos((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4) + (2.*b.*g.*m.^2.*w_1.*exp(-(b.*t)./m).*sin((t.*w_1)./m))./(b.^4 + 2.*b.^2.*w_1.^2 + w_1.^4);
%% w_2
x_t_2 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_2 = (g.*m.*t.*w_2)./(b.^2 + w_2.^2) - (171.*b.^2.*m.*w_2)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (171.*m.*w_2.^3)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (2.*b.*g.*m.^2.*w_2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*m.*w_2.^3.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.^2.*m.*w_2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.*m.*w_2.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (g.*m.^2.*w_2.^2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (2.*b.*g.*m.^2.*w_2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4);
z_t_2 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.*m.*w_2.^2)./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (g.*m.^2.*w_2.^2)./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) - (b.*g.*m.*t)./(b.^2 + w_2.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*m.*w_2.^3.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (171.*b.*m.*w_2.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) + (171.*b.^2.*m.*w_2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(20.*(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (g.*m.^2.*w_2.^2.*exp(-(b.*t)./m).*cos((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4) + (2.*b.*g.*m.^2.*w_2.*exp(-(b.*t)./m).*sin((t.*w_2)./m))./(b.^4 + 2.*b.^2.*w_2.^2 + w_2.^4);
%% w_3
x_t_3 = (2349.*m)./(100.*b) - (2349.*m.*exp(-(b.*t)./m))./(100.*b);
y_t_3 = (g.*m.*t.*w_3)./(b.^2 + w_3.^2) - (171.*b.^2.*m.*w_3)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (171.*m.*w_3.^3)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (2.*b.*g.*m.^2.*w_3)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (171.*b.^3.*m.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*m.*w_3.^3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.^2.*m.*w_3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.*m.*w_3.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (g.*m.^2.*w_3.^2.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (2.*b.*g.*m.^2.*w_3.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4);
z_t_3 = (171.*b.^3.*m)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.*m.*w_3.^2)./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (b.^2.*g.*m.^2)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (g.*m.^2.*w_3.^2)./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) - (b.*g.*m.*t)./(b.^2 + w_3.^2) - (171.*b.^3.*m.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*m.*w_3.^3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (171.*b.*m.*w_3.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) + (171.*b.^2.*m.*w_3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(20.*(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4)) - (b.^2.*g.*m.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (g.*m.^2.*w_3.^2.*exp(-(b.*t)./m).*cos((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4) + (2.*b.*g.*m.^2.*w_3.*exp(-(b.*t)./m).*sin((t.*w_3)./m))./(b.^4 + 2.*b.^2.*w_3.^2 + w_3.^4);
%% Drag Only
xt = (23.49.*m./b) - (23.49.*m.*exp(-b.*t./m)./b);
yt = 0.*t;
zt = (m.*(171.*b + 20.*g.*m)./(20.*b.^2)) - (m.*(g.*t + (exp(-b.*t./m).*(171.*b + 20.*g.*m)./(20.*b)))./b);
%% Plot
figure(1)
plot3(x_t_1, y_t_1, z_t_1)
hold on
plot3(x_t_2, y_t_2, z_t_2)
plot3(x_t_3, y_t_3, z_t_3)
plot3(xt, yt, zt)
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
% xlim([0 15])
ylim([-5 5])
zlim([0 inf])
hs = surf(xlim, ylim, zeros(2));
hs.FaceColor = [0.3 0.5 0.1];
grid on
legend('\omega = 1.5 rad/s', '\omega = 1.0 rad/s', '\omega = 0.5 rad/s', 'Drag Only')
hold off
I'm not sure if a piecewise plot might be the way to go to get a rectangle at z=0, y=[-2 2], x=20 ?
Thanks for the help in advanced!

采纳的回答

Fangjun Jiang
Fangjun Jiang 2019-12-13
help rectangle
  1 个评论
Noah Wilson
Noah Wilson 2019-12-14
From what I read that is for a 2D plot. I'm hoping to put it in my 3D plot. Thanks!

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Annotations 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by