Deep Neural Network Tranining

2 次查看(过去 30 天)
Veton Kepuska
Veton Kepuska 2019-12-14
编辑: Piyush Dubey 2019-12-17
Hi,
I am having trouble in running the modified DeepLearningSpeechRecognitionExample_all that utilzis all the data:
"bird",...
"cat",...
"dog",...
"down",...
"eight",...
"five",...
"four",...
"happy",...
"house",...
"left",...
"marvin",...
"nine",...
"one",...
"right",...
"seven",...
"sheila",...
"six",...
"stop",...
"three",...
"two",...
"zero",...
"bed",...
"go",...
"no",...
"off",...
"on",...
"tree",...
"up",...
"wow",...
and modifyed parametrs in training (double number of feature vectors) that is:
segmentDuration = 1;
frameDuration = 0.020; %0.025;
hopDuration = 0.005; %0.010; <---------------- doubleing the sigze of feature vectors
numBands = 40; %40;
as well as more layers of neural network and larger feature vector size.
numF = 40; %12;
layers = [
imageInputLayer(imageSize)
convolution2dLayer(3,numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,2*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,3*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,4*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,5*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,4*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,3*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,2*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
convolution2dLayer(3,numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
convolution2dLayer(3,numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
dropoutLayer(dropoutProb)
fullyConnectedLayer(numClasses)
softmaxLayer
weightedClassificationLayer(classWeights)];
The code fials with this error:
...done
Training error: 1.2073%
Validation error: 3.8136%
Network size: 4772.4043 kB
Error using classify (line 149)
The length of GROUP must equal the number of rows in TRAINING.
Error in DeepLearningSpeechRecognitionExample_all (line 457)
[YPredicted,probs] = classify(1,x,"ExecutionEnvironment",'cpu');
I need a profesional help to figure out why am getting the length difference? Note that the reson why I am not able to track that problem down is due to the fact that this program requires at least a half-day to run in my computer before it failes.
Thank you
--Veton

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 AI for Signals 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by