How to vary a value inside an integral which is not getting integrated itself?
1 次查看(过去 30 天)
显示 更早的评论
I am trying to find the triple integral of a function with limits defined for 'phi', 'z' and 'r'. On finding the value of the integral at any particular value say h=20 (h IS NOT GETTING INTEGRATED), I get a correct answer which matches with my experimental values. However, as soon as I vary (using linspace or colon) the value of h (h IS NOT GETTING INTEGRATED) I get an error saying "Matrix dimensions must agree". I have attached the code below for reference. Thank you
clc,clear
%magnetic field for an off axis point due to a thick solenoid in z-x plane
l=20; %length of the solenoid
r1 = 5; %inner radius
r2 = 10; %outer radius
u0 = 1.26*(10^-3); %permeability of free space
i = 3; %current in amps
N = 800; %number of turns
C=(u0*i*N)/(2*pi*10*l);
%location of x,y,z cooridnates of P
%rho = linspace(0,22,100);
rho = 0;
h=20:1:35;
Binz = @(r,z,phi)(r.*(r-(rho.*cos(phi))))./(((rho.^2) + (r.^2) + ((h-z).^2) - (2.*r.*rho.*cos(phi))).^(3/2));
Bz = C*integral3(Binz,r1,r2,0,20,0,2*pi); %magnetic field in z direction
plot (Bz,h);
0 个评论
采纳的回答
Star Strider
2020-1-25
The integral2 and integral3 functions do not allow the 'ArrayValued' name-value pair, so it is necessary to ‘nest’ integral calls if you want to do that.
Try this:
%magnetic field for an off axis point due to a thick solenoid in z-x plane
l=20; %length of the solenoid
r1 = 5; %inner radius
r2 = 10; %outer radius
u0 = 1.26*(10^-3); %permeability of free space
i = 3; %current in amps
N = 800; %number of turns
C=(u0*i*N)/(2*pi*10*l);
%location of x,y,z cooridnates of P
%rho = linspace(0,22,100);
rho = 0;
h=20:1:35;
Binz = @(r,z,phi)(r.*(r-(rho.*cos(phi))))./(((rho.^2) + (r.^2) + ((h-z).^2) - (2.*r.*rho.*cos(phi))).^(3/2));
% Bz = C*integral3(Binz,r1,r2,0,20,0,2*pi); %magnetic field in z direction
Bz = integral(@(phi) integral(@(z) integral(@(r) Binz(r,z,phi), r1,r2, 'ArrayValued',1), 0,20, 'ArrayValued',1),0,2*pi, 'ArrayValued',1)
plot (Bz,h);
producing:
Bz =
29.3733 25.2358 21.3369 17.8589 14.8792 12.3925 10.3485 8.6806 7.3222 6.2144 5.3077 4.5619 3.9451 3.4317 3.0019 2.6398
and this plot:
Please check that to be certain it appears reasonable.
Just to be sure, I checked this approach with the first example in the integral3 documentation:
fun = @(x,y,z) y.*sin(x)+z.*cos(x)
q = integral(@(z) integral(@(y) integral(@(x) fun(x,y,z), 0, pi, 'ArrayValued',1), 0,1, 'ArrayValued',1), -1,1, 'ArrayValued',1)
with:
q =
2.0000
being the same as the result in the integral3 documentation.
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!