The Number of coefficents of Time delay neural network

2 次查看(过去 30 天)
for the following Time delay neural network
clc; clear all; close all;
[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
y1 = net1(Xs,Xi);
view(net1)
weights1 = getwb(net1)
According to my understanding; the input to this network supposed to be the current input and the previous inputs X(n), X(n-1), X(n-2)
Hence the number of weights supposed to be (3x20 +20x1) and the bias (20+1) , hence the vector od weights and bias suppoed to a vector with length = 101
But, when I use the getwb(net1) I get vector with length = 81 ??!!
why he neglect the weights of one sample

采纳的回答

Mahesh Taparia
Mahesh Taparia 2020-2-4
Hi
It does not neglect any weight. Since the number of input delays is 2, the number of weights will be (2X20+20X1) and the bias (20+1). The vector length will be 81. If the input delay is 3, then it will be 101. For more information you can refer to the documentation page of timedelaynet here.
  1 个评论
Abdelwahab Afifi
Abdelwahab Afifi 2020-2-4
In case of delay =2, then which of the following will the input of the network ?
1- X(n), X(n-1) and X(n-2)
2- or X(n), X(n-1)

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by