How to make cosine Distance classify

6 次查看(过去 30 天)
Hello! I am a beginner in Matlab.
I have dataset that consisted of 90 data (10 label x 9 data).
Can I get an idea to make classify based on cosine distance or euclidean distance, etc?
  2 个评论
Ameer Hamza
Ameer Hamza 2020-3-13
Can you show an example of your dataset. For example, attach a small dataset and describe what is your expected output.
Kong
Kong 2020-3-13
Hello.
I attached the file. The dataset is consisted of 120 x 2353 (column 2353 is label, 0~6).
I want to calculate each rows using cosine distance or euclidean distance and classify the result.
Thank you!

请先登录,再进行评论。

采纳的回答

Ameer Hamza
Ameer Hamza 2020-3-14
If you want to classify a new vector by using the Euclidean or cosine distance between the rows of your matrix and the new vector the try this
data = readmatrix('geo01_KTH.csv');
predictors = data(:, 1:end-1);
labels = data(:, end);
predictors = normalize(predictors, 2, 'range'); % normalize each row to be in range 0-1
x = rand(1, 2352); % generate a random vector
euclidean_dist = pdist2(predictors, x, 'euclidean');
cosine_dist = pdist2(predictors, x, 'cosine');
[~, euclidean_index] = min(euclidean_dist);
[~, cosine_index] = min(cosine_dist);
euclidean_prediction = labels(euclidean_index);
cosine_prediction = labels(cosine_index);
  11 个评论
Ameer Hamza
Ameer Hamza 2020-3-17
What is the size of predictors_train and x?
Kong
Kong 2020-3-17
I am sorry that I was mistaken.
predictors_train : 80 x 2856, predictors_test : 10 x 2856,
When I modify the code as below, I got this value.
How can I compare this prediction with real labels to calculate accuracy?
for i = 1:10
euclidean_dist{i} = pdist2(predictors_train, predictors_test(i,:), 'euclidean');
[~, euclidean_index{i}] = min(euclidean_dist{i});
euclidean_prediction{i} = labels(euclidean_index{i});
end

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Classification 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by