Use fsolve with an elliptic integral
1 次查看(过去 30 天)
显示 更早的评论
Hello,
I need to solve a non-linear equation with an eliptic integral in it. I tried to used fsolve but it don't want to work, any ideas. I copy the code below:
NI = 6.749914199660242e+05;
NI_ol = 1.749914199660242e+05;
Muo = 4*pi*10^-7; % (T*m/A)
a = 0.2073;
y = 0.15;
% Bos_c = Muo*(NI-NI_ol)*(a^2)/((z(1)^2 + a^2)^(1.5));
% m = (4*a*y)/((a+y)^2+z(1)^2);
%
% [K, E]= ellipke(m);
% Be = 2*Muo*NI*a*((2*m)^0.5)*(a*m*E/(2-2*m) + y*K - y*(2-m)*E/(2-2*m))/(2*pi*(2*a*y)^(1.5));
F=@(z) [Muo*(NI-NI_ol)*(a^2)/((z(1)^2 + a^2)^(1.5))...
- 2*Muo*NI*a*((2*m)^0.5)*(a*m*E/(2-2*m) + y*K - y*(2-m)*E/(2-2*m))/(2*pi*(2*a*y)^(1.5));...
m - (4*a*y)/((a+y)^2+z(1)^2);
[K, E]== ellipke(m)];
z_c = [0; 1000];
opts = optimoptions(@fsolve,'Algorithm', 'levenberg-marquardt');
neff = fsolve(F,z_c,opts);
0 个评论
采纳的回答
Matt J
2020-3-17
编辑:Matt J
2020-3-17
It does not make sense to have a relational expression like,
[K, E]== ellipke(m)
as one of your equations, expecially one that doesn't depend on any of your unknowns, z(i). Also, z(2) is not used anywhere in the system of equations. In other words, you have multiple equations in a single unknown z(1), so the system is not likely to have a solution.
6 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Systems of Nonlinear Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!