Effect of templateSVM('Standardize',true);
3 次查看(过去 30 天)
显示 更早的评论
Dear all,
Is there any documentation that explains the advantage of using
t = templateSVM('Standardize',true)
when using
classifier = fitcecoc(featuresTrain,YTrain,'Learners',t);
Because in my case it provides a better classification result, but need to understand some basics on how it works.
Any comment is appreciated.
Meshoo
3 个评论
c
2020-10-2
%% template = templateSVM('Standardize',true)
% 'BoxConstraint' — 1 (default)
% 'CacheSize' — 1000 (default)
% 'ClipAlphas' — true (default)
% 'DeltaGradientTolerance' — 0 if the solver is ISDA (for example, you set 'Solver','ISDA')
% 'GapTolerance' -0 (default)
% 'IterationLimit' — 1e6 (default)
% 'KernelFunction' — 'linear' Linear kernel, default for two-class learning
% 'KernelOffset' -0.1 if the solver is ISDA (that is, you set 'Solver','ISDA')
% 'KernelScale' — 1 (default)
% 'KKTTolerance' — Karush-Kuhn-Tucker complementarity conditions violation tolerance
% 1e-3 if the solver is ISDA (for example, you set 'Solver','ISDA')
% 'NumPrint' — 1000 (default)
% 'OutlierFraction' —0 (default)
% 'SaveSupportVectors' —true (default) Store support vectors, their labels, and the estimated α coefficients
% 'ShrinkagePeriod' — 0 (default)
% 'Solver' — The default value is 'ISDA'
% 'Standardize' — false (default)
% 'Verbose' — 0 (default)
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Classification Ensembles 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!