Split Jacobian result into Matrix factors

1 次查看(过去 30 天)
Hello,
I'm using the symbolic toolbos to calculate the following Jacobian:
jacobian(A4,phi_)
where
A4 = - TLB*R*TLB2*w
with
The result of jacobian(A4,phi_) calculated by Matlab is
[wz*(r2 + psi*r5 - r8*theta) - wy*(r3 + psi*r6 - r9*theta), wy*(r8 + phi*r9 - psi*r7) - wz*(r1 - r9 + phi*r8 + psi*r4 - 2*r7*theta) + wx*(r3 + r7 + psi*r6 + psi*r8 - 2*r9*theta), - wz*(r6 - phi*r5 + r4*theta) - wy*(r5 - r1 + phi*r6 - 2*psi*r4 + r7*theta) - wx*(r2 + r4 + 2*psi*r5 - r6*theta - r8*theta)]
[ - wx*(r7 + psi*r8 - r9*theta) - wz*(r9 - r5 - 2*phi*r8 + psi*r2 + r7*theta) - wy*(r6 + r8 + 2*phi*r9 - psi*r3 - psi*r7),wx*(r6 + phi*r9 - psi*r3) - wz*(r4 + phi*r7 - psi*r1), wz*(r3 - phi*r2 + r1*theta) - wx*(r5 - r1 + phi*r8 - 2*psi*r2 + r3*theta) + wy*(r2 + r4 + phi*r3 + phi*r7 - 2*psi*r1)]
[ wx*(r4 + psi*r5 - r6*theta) - wy*(r9 - r5 - 2*phi*r6 + psi*r4 + r3*theta) + wz*(r6 + r8 - 2*phi*r5 + r2*theta + r4*theta), - wy*(r2 + phi*r3 - psi*r1) - wx*(r1 - r9 + phi*r6 + psi*r2 - 2*r3*theta) - wz*(r3 + r7 - phi*r2 - phi*r4 + 2*r1*theta), wy*(r7 - phi*r4 + r1*theta) - wx*(r8 - phi*r5 + r2*theta)]
which as you can see isn't very nice looking.
My question is if I can somehow turn this result into a product of my original matrices (if even mathematically possible),
for example ans = TLB*TLB2*R^T*inv(TLB*TLB2) or something like that.
Hope someone can help me here, thanks.
  3 个评论
Simon Detmer
Simon Detmer 2020-5-26
So no possibility to simplify the result while keeping the symbolic variables/matrices? shame...
Thank you for your answer though.
David Goodmanson
David Goodmanson 2020-5-27
With fifteen independent variables sprinkled around by matrix multiplication, you can't expect the results to be sleek. And if you do have a better looking alternative expression such as the one you suggest (assuming it were true) then of course the end result has to be exactly the same as the one you have. So a better starting point doesn't help.

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Debugging and Analysis 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by