Problem with definite Integral
1 次查看(过去 30 天)
显示 更早的评论
I am trying to solve the following definite double integration numerically. The expressions contain summaitions also but that is being executed within few seconds. When the double integration section comes, it is taking extremy huge time even after 7 hours it is still going on without any output. Any advice will be highly appreciated.
clc;
syms n r theta m p l t
w=1.0;
d=1.0;
g=0.2;
lmd=0.5;
assume(r,'real');
assume(theta,'real');
assume(t, 'real');
om=sqrt(((w).^2)-(4.*(g.^2)));
mu=sqrt((w+om)./(2.*om));
nu=((w-om)./(2.*g)).*mu;
eta=(((lmd)./((2.*g)+w)).*(1+((w-om)./(2.*g)))).*mu;
En=((n+(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
um=((m+(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
Enn=((n-(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
umm=((m-(1./2)).*om)-(w./2)-(((lmd).^2)/((2.*g)+w));
Dn=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL(n,(4.*((eta).^2))));
Dm=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL(m,(4.*((eta).^2))));
Dnn=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL((n-1),(4.*(eta.^2))));
Dmm=(d./2).*(exp(-2.*((eta).^(2)))).*(laguerreL((m-1),(4.*(eta.^2))));
Em=En - Dn;
Um=um-Dm;
Ep=Enn + Dnn;
Up=umm +Dmm;
epsn=(Ep-Em)./2;
epsm=(Up-Um)./2;
Deln=(eta.*d./sqrt(n)).*exp(-2.*(eta.^2)).*laguerreL((n-1),1,(4.*(eta.^2)));
Delm=(eta.*d./sqrt(m)).*exp(-2.*(eta.^2)).*laguerreL((m-1),1,(4.*(eta.^2)));
xn=sqrt(((epsn).^2)+((Deln).^(2)));
xm=sqrt(((epsm).^2)+((Delm).^(2)));
zetapn=sqrt(((xn)+(epsn))./(2.*xn));
zetamn=sqrt(((xn)-(epsn))./(2.*xn));
zetapm=sqrt(((xm)+(epsm))./(2.*xm));
zetamm=sqrt(((xm)-(epsm))./(2.*xm));
z= 1i.*(mu-nu).*eta./(sqrt(2.*mu.*nu));
a1n=(zetapn./sqrt(factorial(n-1))).*((-nu./(2.*mu)).^(-1./2)).*hermiteH(n-1, z);
b1n=(Deln./abs(Deln)).*(zetamn./sqrt(factorial(n))).*hermiteH(n, z);
a2n=(zetamn./sqrt(factorial(n-1))).*((-nu./(2.*mu)).^(-1./2))*hermiteH(n-1, z);
b2n= (Deln./abs(Deln)).*(zetapn./sqrt(factorial(n))).*hermiteH(n, z);
a1m=(zetapm./sqrt(factorial(m-1))).*((-nu./(2.*mu)).^(-1./2)).*hermiteH(m-1, z);
b1m=(Delm./abs(Delm)).*(zetamm./sqrt(factorial(m))).*hermiteH(m, z);
a2m=(zetamm./sqrt(factorial(m-1))).*((-nu./(2.*mu)).^(-1./2))*hermiteH(m-1, z);
b2m= (Delm./abs(Delm)).*(zetapm./sqrt(factorial(m))).*hermiteH(m, z);
c0= -(1./sqrt(2.*mu)).*exp(-((eta.^2)./2)+ ((nu.*(eta).^2)./(2.*mu)));
cpn= -c0.*((-nu./(2.*mu)).^(n./2)).*(a1n - b1n);
cmn= -c0.*((-nu./(2.*mu)).^(n./2)).*(a2n + b2n);
cpm= -c0.*((-nu./(2.*mu)).^(m./2)).*(a1m - b1m);
cmm= -c0.*((-nu./(2.*mu)).^(m./2)).*(a2m + b2m);
E0=(om./2)-(w./2)-(((lmd).^2)./((2.*g)+w));
eg= E0-((d./2).*(exp(-2.*((eta).^(2)))));
ep=(1./2).*(Ep+ Em + (sqrt(((Ep-Em).^2)+(4.*((Deln).^2)))));
em=(1./2).*(Ep+ Em - (sqrt(((Ep-Em).^2)+(4.*((Deln).^2)))));
upp= (1./2).*(Up+ Um + (sqrt(((Up-Um).^2)+(4.*((Delm).^2)))));
umm= (1./2).*(Up+ Um - (sqrt(((Up-Um).^2)+(4.*((Delm).^2)))));
c0t= c0.*exp(-1i.*eg.*t);
cpnt= cpn.*exp(-1i.*ep.*t);
cmnt= cmn.*exp(-1i.*em.*t);
cpmt= cpm.*exp(-1i.*upp.*t);
cmmt= cmm.*exp(-1i.*umm.*t);
Ant=zetapn.*cpnt + zetamn.*cmnt;
Bnt= (Deln./abs(Deln)).*(zetamn.*cptn - zetapn.*cmnt);
Amt= zetapm.*cpmt + zetamm.*cmmt;
Bmt= (Delm./abs(Delm)).*(zetamm.*cpmt - zetapm.*cmmt);
beta= r.*exp(1i.*theta);
guard_digits = 10;
sp11= ((1i.^p)./factorial(p)).*((nu./(2.*mu)).^(p./2)).*hermiteH(p, 1i.*beta./sqrt(2.*mu.*nu)).*(eta.^(p+m)).*hypergeom([-p -m],[], -1./(eta.^2));
Hp11= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-((beta.^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(m))).*sum(vpa(subs(sp11,p,1:20), guard_digits));
sp22= (((-1i).^l)./factorial(l)).*((nu./(2.*mu)).^(l./2)).*hermiteH(l, -1i.*conj(beta)./sqrt(2.*mu.*nu)).*(eta.^(l+n)).*hypergeom([-l -n],[], -1./(eta.^2));
Hp22= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-(((conj(beta)).^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(n))).*sum(vpa(subs(sp22,l,1:20), guard_digits));
sm11= ((1i.^p)./factorial(p)).*((nu./(2.*mu)).^(p./2)).*hermiteH(p, 1i.*beta./sqrt(2.*mu.*nu)).*(-eta.^(p+m)).*hypergeom([-p -m],[], -1./(eta.^2));
Hm11= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-((beta.^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(m))).*sum(vpa(subs(sm11,p,1:20), guard_digits));
sm22= (((-1i).^l)./factorial(l)).*((nu./(2.*mu)).^(l./2)).*hermiteH(l, -1i.*conj(beta)./sqrt(2.*mu.*nu)).*(-eta.^(l+n)).*hypergeom([-l -n],[], -1./(eta.^2));
Hm22= ((exp(-((eta.^2)./2)-(((abs(beta)).^2)./2)-(((conj(beta)).^2).*(nu)./(2.*mu))))./sqrt(mu.*factorial(n))).*sum(vpa(subs(sm22,l,1:20), guard_digits));
Hp1=Hp22.*Hp11;
Hm1=Hm22.*Hm11;
Hp(n,m)= (1./(2.*pi)).*(Hp1 + Hm1);
Hm(n,m)= (1./(2.*pi)).*(Hp1 - Hm1);
f11=((abs(c0t)).^2).*Hp(0,0);
f22= c0t.*conj(Ant).*Hm(0,n-1) + conj(c0t).*Ant.*Hm(n-1,0)+ c0t.*conj(Bnt).*Hp(0,n) + conj(c0t).*Bnt.*Hp(n,0);
f33= Ant.*conj(Amt).*Hp(n-1,m-1) + Bnt.*conj(Bmt).*Hp(n,m) + Bnt.*conj(Amt).*Hm(n,m-1) +Ant.*conj(Bmt).*Hm(n-1,m);
sf33= sum(vpa(subs(f33,m,1:20), guard_digits));
f=f11 + sum(vpa(subs(f22,n,1:20), guard_digits)) + sum(vpa(subs(sf33,n,1:20), guard_digits));
vpaintegral(vpaintegral(f, r, [0 10]), theta, [0 2.*pi]) %% 'r' and 'theta' are integration variable
%int(int(f,r,0,10),theta,0,2*pi)
0 个评论
采纳的回答
Ameer Hamza
2020-6-2
If you check at the expression of 'f', you can see it also has 't'. So even if you try to numerically integrate it w.r.t. 'r' and 'theta', the answer will still be symbolic.
Also, I suggest you to use matlabFunction() to convert the symbolic expression into a floating-point function, which is much faster than the symbolic calculations. For example, instead of vpaintegral(), try this
F = matlabFunction(f, 'Vars', [r theta t]);
int_val = integral2(@(r, theta) F(r, theta, 0), 0, 10, 0, 2*pi)
This assumes that t=0 to get a function in terms of r and theta.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Calculus 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!