How to import Keras layers for regression?

1 次查看(过去 30 天)
Hi all. I am playing around with importing Keras layers for an LSTM problem but can't seem to get even a basic fully connected single layer network to work. Even though my Keras model just has a basic input layer, Matlab reads it as an "ImageInputLayer". This is for a simple sequence-to-sequence regression problem. I just want to feed in a 2D matrix with multiple features and a series of timesteps but it expects a 3D image tensor. Is there something wrong with the Keras model or do I need to preprocess my data differently? Thanks in advance!
  2 个评论
Friedrich Seiffarth
Did you find a solution for your problem ? Because I am running into the same problem.

请先登录,再进行评论。

回答(1 个)

Sivylla Paraskevopoulou
Since R2020b, Deep Learning Toolbox provides the featureInputLayer layer, and since R2021a you can import the TensorFlow-Keras layer Input as a featureInputLayer. For a complete list, see TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers.
The importTensorFlowNetwork function tries to append an output layer to the imported network by interpreting the loss function of the TensorFlow model. If your model doesn't specify a loss function, specify the OutputLayerType name-value argument of importTensorFlowNetwork as "regression".

类别

Help CenterFile Exchange 中查找有关 Classification Ensembles 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by