How to find tangent vector or velocity vector and unit tangent vector of Space curve (3D)?
8 次查看(过去 30 天)
显示 更早的评论
I have the curvature of a curve, start point P1(x1,y1,z1) and end point P2(x2,y2,z2), radius of curvature, arc length, and a cord length of a curve. Now I want to find the tangent or velocity vector and unit tangent vector of this curve. I am developing a code for continuum robot dynamics.
The orange colour shows the curvature created by spline and while blue line shows the cord or vector from Pi-1 to Pi.
%Kappas,thetas, phis%
%%--------------------------------------------------------------
%kappa -- magnitudes (beta and gamma) of segments
k1 = kappa_vec(1,1);
k2 = kappa_vec(1,2);
k3 = kappa_vec(1,3);
%theta -- the subsegment bending angle ?i
th1 = theta_vec(1,1);
th2 = theta_vec(1,2);
th3 = theta_vec(1,3);
%phi -- the bending plane angle ?i
phi1 = phi_vec(1,1);
phi2 = phi_vec(1,2);
phi3 = phi_vec(1,3);
%epsilon - the subsegment twist angle ?i
e1 = epsilon_list(1,1);
e2 = epsilon_list(1,2);
e3 = epsilon_list(1,3);
%%--------------------------------------------------------------
%Rotation matrices%
%%--------------------------------------------------------------
R_1 = rot(phi1, th2, e1);
R_2 = R_1* rot(phi2, th2, e2);
R_3 = R_2* rot(phi3, th3, e3);
%%--------------------------------------------------------------
% POsition vectors%
%%--------------------------------------------------------------
if k1 == 0
p1 = [0;0;L0];
else
p1 = p_lcl(k1,th1,phi1);
end
%%-------------------------------------
p_vec = [B p1 p2 p3 p4 p5 p6 p7 p8 p9 p10]; % B is base position, and rest are position eacg disk center.
p_vec(isinf(p_vec)|isnan(p_vec)) = 0; %to remove infinity and NaN
%%-------------------------------------
0 个评论
回答(1 个)
Aditya Srikar
2023-4-28
编辑:Aditya Srikar
2023-4-28
Hi Hussain
Let the position vector be P(t)
Let P′(t) = d[P(t)] / dt
The tangent vector of curve is P′(t)
The unit tangent vector of curve is T(t) = P′(t) / |P′(t)|
Where |P′(t)| represents magnitude of vector P′(t)
Hope it helps !
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Robotics 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!