Vectorization of while loop

6 次查看(过去 30 天)
Hi all,
I have a small function, which generates random numbers in a specific interval. The function tests the generated values in respect to a certain bound and recalculates the random numbers again, if the bound is violated. I have to call this function several times (in this case 60 000 times), so this takes a lot of time (3/4 of the total time). I have read about vectorizing the code to improve performance. But I am totally helpless with this task. Your help would be greatly appreciated.
However, if someone has an idea to rewrite the while loop in a different way that would be great, as well.
Michi
Code:
meanValue = 10;
devValue = 1;
numValues = 10000;
presumption = 1;
for i = 1:60000
arrayValues = RandomNums(meanValue, devValue, numValues, presumption);
end
function arrayValues = RandomNums (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
arrayValues = devValue*randn(numValues,1) + meanValue;
% check confidence-limes for each value and create new one if outside
for idx = 1:numel(arrayValues)
while (arrayValues(idx) > (meanValue + presumption*devValue) || arrayValues(idx) < (meanValue - presumption*devValue))
arrayValues(idx) = devValue*randn(1,1,'double') + meanValue;
end
end
end
Performance:
  2 个评论
Bruno Luong
Bruno Luong 2020-7-15
You should look for "truncated gaussian" distribution, and posts how to generate them.
elchico
elchico 2020-7-15
Hi Bruno,
thank you for your reply. I've tried that, but as far as I understand, it does not make it better. Maybe, I have missed /missunderstood something?
Thanks again!
Code with Comparison:
meanValue = 10;
devValue = 1;
numValues = 10000;
presumption = 1;
for i = 1:10
arrayValues = RandomNums(meanValue, devValue, numValues, presumption);
a = ["arrayValues1",num2str(i)];
disp(a)
pause(0.00001);
end
for ii = 1:10
arrayValues2 = RandomNums2(meanValue, devValue, numValues, presumption);
a = ["arrayValues2",num2str(ii)];
disp(a)
pause(0.00001);
end
function arrayValues = RandomNums (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
arrayValues = devValue*randn(numValues,1) + meanValue;
% check confidence-limes for each value and create new one if outside
for idx = 1:numel(arrayValues)
while (arrayValues(idx) > (meanValue + presumption*devValue) || arrayValues(idx) < (meanValue - presumption*devValue))
arrayValues(idx) = devValue*randn(1,1,'double') + meanValue;
end
end
end
function arrayValues2 = RandomNums2 (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
pd = makedist('Normal','mu',meanValue,'sigma',devValue);
confidence = presumption*devValue;
t = truncate(pd,meanValue - confidence,meanValue + confidence);
arrayValues2 = random(t,numValues);
end
Performance:

请先登录,再进行评论。

采纳的回答

Bruno Luong
Bruno Luong 2020-7-16
meanValue = 10;
devValue = 1;
numValues = 1000000;
presumption = 2;
tic
% Function from here https://www.mathworks.com/matlabcentral/fileexchange/23832-truncated-gaussian
arrayValues = meanValue + TruncatedGaussian(-devValue, presumption*[-1 1], [1 numValues]);
toc % Elapsed time is 0.055511 seconds for one billions random numbers.
% Check histogram
hist(arrayValues,100)
Histogram obtained
  3 个评论
Bruno Luong
Bruno Luong 2020-10-3
It mainly because it uses different method (non rejection) and inverse error function.

请先登录,再进行评论。

更多回答(1 个)

elchico
elchico 2020-10-2
Hi Bruno,
one more question to your code: Do you have something similar with Poisson Distribution etc.?
Thanks.
  2 个评论
elchico
elchico 2020-10-3
okay, that is sad for me but: thanks anyways ;-)
May I ask you what is the difference in performance between your code (so fast!) compared to my initial Gauss code? I have to explain this and I am not totally sure about it ...

请先登录,再进行评论。

产品


版本

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by