How to calculate Jacobian matrix through numerical analysis.
9 次查看(过去 30 天)
显示 更早的评论
Hello. I would like to obtain the Jacobian matrix of the aircraft and implement the extended Kalman filter. I want to estimate the state variable after n seconds through the Extended Kalman Filter. I implemented the following formula.



xdot is
, d_xdot is
, delta is
.



function [J,fdx,fx,dx,deltafx] = Jacobian(xdot,d_xdot,delta)
fdx=zeros(9,1);
fx=zeros(9,1);
dx=zeros(9,1);
J=zeros(9);
deltafx=zeros(9);
fdx(1) = d_xdot(1);
fdx(2) = d_xdot(14);
fdx(3) = d_xdot(27);
fdx(4) = d_xdot(40);
fdx(5) = d_xdot(53);
fdx(6) = d_xdot(66);
fdx(7) = d_xdot(82);
fdx(8) = d_xdot(95);
fdx(9) = d_xdot(108);
fx(1)=xdot(1);
fx(2)=xdot(2);
fx(3)=xdot(3);
fx(4)=xdot(4);
fx(5)=xdot(5);
fx(6)=xdot(6);
fx(7)=xdot(10);
fx(8)=xdot(11);
fx(9)=xdot(12);
dx(1)=delta(1);
dx(2)=delta(2);
dx(3)=delta(3);
dx(4)=delta(4);
dx(5)=delta(5);
dx(6)=delta(6);
dx(7)=delta(10);
dx(8)=delta(11);
dx(9)=delta(12);
for i=1:9
for j=1:9
J(i,j)=(fdx(i)-fx(i))/dx(j);
end
end
end
'd_xdot' is calculated as follows.

I would like to ask for advice if this is correct.
0 个评论
回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!