Neural network performance evaluation????
3 次查看(过去 30 天)
显示 更早的评论
for evaluating NN performance for a given number of trail or retrain which approach is right and why?????
for trail=1:100
net=newff(....);
[net,tr,Y,E,Pf,Af] = train(...);
......;
end
OR
net=newff(....);
for trail=1:100
[net,tr,Y,E,Pf,Af] = train(...);
........;
end
Note: i am getting decent result for both approach; but the later giving me best result.
0 个评论
采纳的回答
更多回答(1 个)
Greg Heath
2012-12-27
The first example is the correct one because it containss 100 random weight initializations. Therefore each net is a valid independent result.
The 2nd example just keeps training the same net more and more.
What, exactly, do you mean by decent results?
Is this regression or classification?
Are you using validation stopping?
How many acceptable solutions out of 100?
If regression, what are the means and standard deviations of the training, validation and testing NORMALIZED (with average target variance) mean-square-error?
I usually shoot for (but don't always get) NMSEtrn <= 0.01
For an I-H-O net
Ntrneq = prod(size(ttrn)) % Ntrn*O = No. of training equations
Nw = (I+1)*H +(H+1)*O % No. of unknown weights
NMSEtrn = sse(trn-ytrn)/(Ntrneq-Nw)/mean(var(ttrn',0))
NMSEi = mse(yi-ti)/mean(var(ti',1)) for i = val and test
I have posted many example in NEWSGROUP and ANSWERS. Try searching on
heath newff Ntrials
Hope this helps.
Thank you for formally accepting my answer.
Greg
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!