Vector dimensions in my ode
3 次查看(过去 30 天)
显示 更早的评论
clc,clear all
k_s = 26400; %spring stiffness
m = 483; %Mass
f_n = sqrt(k_s/m)/(2*pi); %Natural frequency in Hz
%% Road profile
% spatial frequency (n0) cycles per meter
Omega0 = 0.1; %%%%conventional value of spatial frequency(n0)?
% psd ISO (used for formula 8)
Gd_0 = 32 * (10^-6);
% waveviness
w = 2;
% road length
L = 250;
%delta n
N = 1000;
Omega_L = 0.004;
Omega_U = 4;
delta_n = 1/L; % delta_n = (Omega_U - Omega_L)/(N-1);
% spatial frequency band
Omega = Omega_L:delta_n:Omega_U;
%PSD of road
Gd = Gd_0.*(Omega./Omega0).^(-w);
% calculate amplitude using formula(8) in the article
%Amp = sqrt(2*Gd*delta_n); %%%from Eq. 7?
%calculate amplitude using simplified formula(9) in the article
k = 3; %%%upper limit A and lower limit B k=3?
%Amp = sqrt(delta_n) * (2^k) * (10^-3) * (Omega0./Omega);
Amp = sqrt(delta_n) * (2^k) * (10^-3) * (Omega0./Omega);
%random phases
Psi = 2*pi*rand(size(Omega));
% x abicsa from 0 to L
x1 = 0:0.25:250;
h= zeros(size(x1));
%artificial random road profile
for iv=1:length(x1)
h(iv) = sum( Amp.*cos(2*pi*Omega*x1(iv) + Psi) );
end
%% ode45
T = 120;
x0 = [0,0];
f = @(t,x) [ x(2); -( k_s*(x(1)-h)/ m ) ];
[t, x] = ode45(f,[100,T],x0);
%% plot
plot(t,x(:,1));
set(gca,'xtick',17)
Hi, I generated a random road file (h) and tried to apply this in my ode, however it says the vector dimension is not consistent. Can anyone solve this problem please?
0 个评论
采纳的回答
Alan Stevens
2020-8-3
I think the following produces somewhat more sensible results. I was confused for some time because you use x for both distance along the road and for vertical displacement. I've changed the latter to y. See if this does what you want:
k_s = 26400; %spring stiffness
m = 483; %Mass
f_n = sqrt(k_s/m)/(2*pi); %Natural frequency in Hz
%% Road profile
% spatial frequency (n0) cycles per meter
Omega0 = 0.1; %%%%conventional value of spatial frequency(n0)?
% psd ISO (used for formula 8)
Gd_0 = 32 * (10^-6);
% waveviness
w = 2;
% road length
L = 250;
%delta n
N = 100;
Omega_L = 0.004;
Omega_U = 4;
delta_n = 1/L; % delta_n = (Omega_U - Omega_L)/(N-1);
% spatial frequency band
Omega = Omega_L:delta_n:Omega_U;
%PSD of road
Gd = Gd_0.*(Omega./Omega0).^(-w);
% calculate amplitude using formula(8) in the article
%Amp = sqrt(2*Gd*delta_n); %%%from Eq. 7?
%calculate amplitude using simplified formula(9) in the article
k = 3; %%%upper limit A and lower limit B k=3?
%Amp = sqrt(delta_n) * (2^k) * (10^-3) * (Omega0./Omega);
Amp = sqrt(delta_n) * (2^k) * (10^-3) * (Omega0./Omega);
%random phases
Psi = 2*pi*rand(size(Omega));
% x abicsa from 0 to L
x1 = 0:250/(N-1):250;
h= zeros(size(x1));
%artificial random road profile
for iv=1:length(x1)
h(iv) = sum( Amp.*cos(2*pi*Omega*x1(iv) + Psi) );
end
hx = [x1' h'];
%% ode45
y0 = [0,0];
[t, y] = ode45(@f,x1,y0,[],hx);
%% plot
figure
plot(t,y(:,1));
xlabel('time'),ylabel('vertical displacement')
function dydt = f(t,y,hx)
k_s = 26400; %spring stiffness
m = 483; %Mass
v = 1; % speed along road
x = v*t;
hs = hfn(x,hx);
dydt =[y(2);
-( k_s*(y(1)-hs)/ m )];
end
function hs = hfn(x, hx)
hs = interp1(hx(:,1),hx(:,2),x);
end
更多回答(1 个)
Alan Stevens
2020-8-3
编辑:Alan Stevens
2020-8-3
The problem is here:
f = @(t,x) [ x(2); -( k_s*(x(1)-h)/ m ) ];
When you call this function, x(2) is a single value, but since h is a large vector the the term -( k_s*(x(1)-h)/ m ) has a large number of elements, so you are attempting to create a matrix with one column in the first row and many columns in the second row. Matlab is objecting to this!
I guess you need to make f a function of h as well, and pass in the appropriate single value when you call it.
12 个评论
madhan ravi
2020-8-3
编辑:madhan ravi
2020-8-3
If you don’t understand something, you can always ask a follow up question, in the SAME thread. Asking the same question multiple times will only be time consuming and will not yield any benefits. Taking into consideration people here are VOLUNTEERS not assignment/problem solvers.
Walter Roberson
2020-8-4
I cannot go back and pull out what I already posted to illustrate any last few details, because two earlier threads on the topic were deleted :( Two volunteers spent their time explaining the difficulty to you, and you deleted what they wrote, wasting their time :(
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!