How to input a 3D matrix to SVMtrain? (2class problem)
2 次查看(过去 30 天)
显示 更早的评论
Hi. I have a 3D matrix Training (4x12x7) with first dimension being the number of samples. Group gives the labels +1 or -1. I get an error when I try to input this to svmtrain
Training(:,:,1) = [0 0 0 0 0 0 1 0 2 1 3 0; 0 0 0 1 1 0 0 1 2 2 1 0; 0 1 0 0 0 0 0 0 0 0 1 1;0 0 0 0 1 0 2 0 2 0 2 0];
Training(:,:,2) = [0 0 0 0 0 0 1 0 2 1 0 0; 0 0 0 1 1 0 0 1 0 2 1 1; 0 1 0 0 0 0 0 0 0 0 1 1;0 0 0 0 1 0 2 0 3 0 2 2];
Training(:,:,3) = [0 0 0 0 0 0 1 0 2 1 3 0; 0 0 0 0 1 0 0 1 2 0 1 0; 0 1 0 0 5 0 0 0 0 0 1 1;0 0 0 0 0 0 0 0 2 0 3 2];
Training(:,:,4) = [1 1 0 0 0 0 1 0 0 1 3 0; 0 4 0 2 0 0 0 0 2 0 2 1; 0 1 0 0 0 0 0 0 0 0 1 1;0 1 2 0 0 0 1 0 0 0 0 2];
Training(:,:,5) = [0 0 2 0 0 0 1 0 2 0 0 0; 0 0 0 3 1 0 0 1 2 2 1 1; 0 1 0 2 0 0 0 0 0 0 3 1;0 0 0 0 1 0 0 0 2 0 2 3];
Training(:,:,6) = [0 0 0 0 0 0 1 0 2 1 3 0; 0 0 0 1 0 0 0 1 1 2 0 1; 0 1 0 0 0 0 0 0 0 0 1 1;0 0 0 0 0 0 2 0 2 0 0 2];
Training(:,:,7) = [1 0 0 0 0 0 0 0 2 0 3 0; 0 0 0 1 1 0 0 1 2 1 1 1; 0 1 0 0 0 0 5 0 0 0 1 1;0 0 0 0 1 0 2 0 2 0 2 2];
Group = [1 1 -1 -1];
SVMStruct = svmtrain(Training,Group);
The error is below
??? Error using ==> svmtrain at 453
Error calculating the kernel function:
Transpose on ND array is not defined.
I think it is an issue with input of more than 2 dim. If "Training" is 4x12, there is no problem. Can any one help me? Thanks
0 个评论
采纳的回答
Shashank Prasanna
2013-2-8
Just reshape your data such that svm understands what your observations are and what your targets are:
Tr = reshape(Training,[4 84])';
Group = [1 1 -1 -1];
SVMStruct = svmtrain(Tr,Group);
5 个评论
Sheema Khattak
2014-8-22
Still get the same error Error using svmtrain (line 254) Y and TRAINING must have the same number of rows.
marie vill
2015-3-24
Hi I didn't know how to use svm classification with matrix ,I apply at the first MFCC so I wil have for each data a matrix (34*numbre of sample),I used 9 signals for the training and 9 for the test please there is any one know how to implement this??
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!