invalid training data for following code?

1 次查看(过去 30 天)
Error : The output size [132 132132 6] of the last payer does not match the response size [132 132 132 3]
My code is following
imageDir=fullfile(tempdir,'PP');
if ~exist(imageDir,'dir')
mkdir(imageDir);
end
sourceDatalaoc=[imageDir filesep 'Brain'];
volc=fullfile (sourceDatalaoc, 'AA')
if~ exist(volc,'dir')
mkdir(volc);
end
loc=fullfile (sourceDatalaoc, 'BB')
if~ exist(loc,'dir')
mkdir(loc);
end
%matReader = @samplePXDSMatReader;
imds = imageDatastore(volc,'FileExtensions','.nii','ReadFcn',@sampleReadeFcn);
%auimds = augmentedImageDatastore([64 64 64 ],imds)
classNames = ["edema","nonEnhancingTumor","enhancingTumour"];
pixelLabelID = [1 2 3];
pxds = pixelLabelDatastore(loc,classNames,pixelLabelID,'FileExtensions','.nii','ReadFcn',@sampleReadeFcn);
V = read(imds);
L = read(pxds);
%h = labelvolshow(L,V(:,:,:,1));
pximds = pixelLabelImageDatastore(imds,pxds);
inputPatchSize = [132 132 132 4];
numClasses = 2;
patchSize = [132 132 132];
patchPerImage = 8;
miniBatchSize = 16;
patchds = randomPatchExtractionDatastore(imds,pxds,patchSize, ...
'PatchesPerImage',patchPerImage);
patchds.MiniBatchSize = miniBatchSize;
layers = [
image3dInputLayer([132 132 132 4])
convolution3dLayer(3,12,'Stride',1,'Padding','Same')
batchNormalizationLayer
reluLayer
transposedConv3dLayer(3,12,'Stride',1,'Cropping',1)
batchNormalizationLayer
reluLayer
transposedConv3dLayer(3,6,'Stride',1,'Cropping',1)
softmaxLayer
pixelClassificationLayer
]
opts = trainingOptions('sgdm', ...
'InitialLearnRate',1e-3, ...
'ExecutionEnvironment','CPU',...
'MaxEpochs',100);
[net2,info] = trainNetwork(patchds,layers,opts);close
function data = sampleReadeFcn(filename)
data = niftiread(filename)
end

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Agriculture 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by