Finite Difference method solver
2 次查看(过去 30 天)
显示 更早的评论
I have the following code in Mathematica using the Finite difference method to solve for c1(t), where . However, I am having trouble writing the sum series in Matlab. The attatched image shows how the plot of real(c(t) should look like.
\[CapitalOmega] = 0.3;
\[Alpha][\[Tau]] := Exp[I \[CapitalOmega] \[Tau]] ;
dt = 0.1;
Ns = 1000;
ds = dt/Ns;
Ttab = Table[T, {T, 0, 10, dt}];
Stab = Table[s, {s, 0, dt - ds, ds}];
c[0] = 1;
Do[corrSum[n] = Sum[c[nn - 1]*Sum[\[Alpha][n dt - m ds]*ds, {m, Ns (nn - 1), Ns nn , 1}], {nn, 1, n}];
c[n] = c[n - 1] - dt*corrSum[n](*c[n-1]*\[Alpha][n dt]*), {n, 1, 100}]
cTtab = Table[{n*dt, c[n]}, {n, 0, 100}]
FDiff = ListPlot[Re[cTtab], PlotStyle -> Orange, PlotLegends -> {"Finite Difference"}]
0 个评论
采纳的回答
Alan Stevens
2020-11-7
By differentiating c' again you can solve the resulting second order ode as follows
c0 = 1;
v0 = 0;
IC = [c0 v0];
tspan = [0 10];
[t, C] = ode45(@odefn, tspan, IC);
c = C(:,1);
plot(t,real(c),'ro'),grid
xlabel('t'), ylabel('real(c)')
function dCdt = odefn(~,C)
Omega = 0.3;
c = C(1);
v = C(2);
dCdt = [v;
-1i*Omega*v - c];
end
This results in
7 个评论
Alan Stevens
2020-11-8
Well, here is an explicit finite difference version that uses an outer and an inner loop, with the same values of dt and ds as in the Mathematica version. However, it is probably not what you want still, as it isn't a line by line translation of the Mathematica code. I'll leave further development to you!
Omega = 0.3;
dt = 0.1;
Ns = 1000;
ds = dt/Ns;
t = 0:dt:10;
N = numel(t);
c = zeros(1,N);
c(1) = 1;
v = 0;
for n = 1:N-1 % Outer loop; c is updated each iteration of this loop
% Inner loop: c is taken to be constant through this loop, the same
% approximation as is made in section 5.2.1 of the pdf.
for nn = 1:Ns
v = v - (1i*Omega*v + c(n))*ds;
end
c(n+1) = c(n) + v*dt;
end
plot(t,real(c),'.'),grid
xlabel('t'),ylabel('real(c)')
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Particle & Nuclear Physics 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!