Reinforcement Learning experience buffer length and parallelisation toolbox
2 次查看(过去 30 天)
显示 更早的评论
Tech Logg Ding
2020-12-2
编辑: Emmanouil Tzorakoleftherakis
2020-12-3
When parallelisation is used when training a DDPG agent with the following settings:
trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = -1;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';
Does the the parallel simulations have their own experience buffer? This could take up more memory hence I am hoping that only one experience buffer is stored to update the critic network.
From the documentations, it seems like there will only be one experience buffer as the experiences are sent back to the host.
0 个评论
采纳的回答
Emmanouil Tzorakoleftherakis
2020-12-3
编辑:Emmanouil Tzorakoleftherakis
2020-12-3
Hello,
There is one big experience buffer on the host, the size of which you determine as usual in your agent options. Each worker has a much smaller buffer to collect experiences until you reach "StepsUntilDataIsSent".
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Training and Simulation 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!