How to count kfoldloss error from ClassificationLinear?
1 次查看(过去 30 天)
显示 更早的评论
cv = cvpartition(numel(y_trainUndersampled),'Kfold',5);
hyperOpt = struct('AcquisitionFunctionName','expected-improvement-plus',...
'Optimizer','bayesopt','MaxObjectiveEvaluations', 100,...
'CVPartition', cv);
bestLogsMdl = fitclinear(X_trainUndersampled, y_trainUndersampled,...
'Learner', 'logistic',...
'OptimizeHyperparameters',{'Lambda','Regularization'},...
'HyperparameterOptimizationOptions',hyperOpt,...
'ScoreTransform','logit');
Hi, I have used hyperparameter optimization on fitclinear function. The code above produces bestLogsMdl as ClassificationLinear.
I want to use ClassificationLinear to count the kfoldLoss.
However based on the documentation in https://uk.mathworks.com/help/stats/fitclinear.html#bu5mw4p , kfoldLoss is used on ClassificationPartitionedLinear
How to use hyperparameter optimization with fitclinear together on the kfoldLoss? What modifications are needed on the fitclinear so it would produce ClassificationPartitionedLinear?
My ultimate goal is to plot a misclassification rate vs number of learning cycles graph
0 个评论
采纳的回答
Walter Roberson
2020-12-8
编辑:Walter Roberson
2020-12-10
You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.
So you need to get rid of OptimizeHyperParameters and set appropriate HyperparameterOptimizationOptions
0 个评论
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!