Solve non-linear system of equations with variable number of unknowns

3 次查看(过去 30 天)
Hi everyone, I need some help. I have written a script to form system of nonlinear equations using the symbolic toolbox (because the equation forms are not fixed and dependant on certain parameters) and I need to solve them. I know how to solve a system of nonlinear equations with multiple unknowns, by parameterising the function as follows:
matfun=matlabFunction( symbolic_eqn );
funMiddleMan = @(f) matfun(f(1),f(2),f(3),f(4),f(5),f(6),f(7),f(8),f(9),f(10),...
f(11),f(12)); % the function has 12 unknowns
x0=zeros(1,12);
[soln_fs,fval_fs]=fsolve(funMiddleMan,x0);
However, for the case where I wish to vary the number of unknowns in "symbolic_eqn", what should I do do make this work? For now, the only idea I can think of is by writing an inelegant list of conditional statements of the form:
switch num_unknowns
case N
funMiddleMan = @(f) matfun(f(1),f(2),...,f(N)); %for N number of variables
[...]
end
Would you please guide me on how I can solve this problem?
Thank you for your help and time.
  1 个评论
Ash Ash
Ash Ash 2020-12-10
If it's not possible to do so and I need to use a list of conditional statements please do let me know. Thank you

请先登录,再进行评论。

采纳的回答

Walter Roberson
Walter Roberson 2020-12-10
%{
matfun = matlabFunction( symbolic_eqn, 'vars', [list variables here]);
%}
for example
N = 5;
syms F [1 N]
expr = sum(randn(1,N) .* F);
f1 = matlabFunction( expr, 'vars', F)
f1 = function_handle with value:
@(F1,F2,F3,F4,F5)F1.*3.599379160893824e-1-F2.*1.002299459586992-F3.*1.613867501380812e-1-F4.*1.083541721318095+F5.*2.742004284674245e-1
But most of the time it is easier to instead
f2 = matlabFunction( expr, 'vars', {F} )
f2 = function_handle with value:
@(in1)in1(:,1).*3.599379160893824e-1-in1(:,2).*1.002299459586992-in1(:,3).*1.613867501380812e-1-in1(:,4).*1.083541721318095+in1(:,5).*2.742004284674245e-1
That second use of matlabFunction expects to be passed a row vector of N values, rather than N individual values.
  6 个评论
Ash Ash
Ash Ash 2020-12-25
aha! I get it now, I'm familiar with the usage of "sym". Thank you for responding . Merry Christmas to you!

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Assumptions 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by