Simpson's Rule Illustration - How to create those parabolas?
1 次查看(过去 30 天)
显示 更早的评论
I managed to create the rectangle and trapezium strips, but stuck on the parabola strips for Simpson's Rule like the one shown below.

In this code, the user has to input the strip width, function, limits,
Here's my code for the RECTANGLE STRIPS
% 7. Display figure
clf, hold on;
plot([a b], [0 0], 'k' ), plot([0 0], [min( y_x(x) ) max( y_x(x))], 'k') % This shows a black line for the x-axis (y=0) and the y-axis (x=0).
xlabel('x', 'FontWeight', 'bold'), ylabel('y(x)', 'FontWeight', 'bold')
title(['Numeric integration through Rectangle Rule of y(x)=' , y_xs , ' with ', num2str(n), ' slices ||| Result is ', num2str(S_r) '.'] , 'FontWeight', 'bold')
% 8. To create the rectangular strips
for x=a:dx:(b-dx);
y_x(x);
left = x; right = x+dx; bottom = 0; top = y_x(x);
X = [left left right right]; Y = [bottom top top bottom]; %to create the shape
fill(X,Y, 'b', 'FaceAlpha', 0.3)
end
% 9. Display a smooth line in the graph
x = a:dx/100:b;
plot(x, y_x(x), 'k')
Here's my code for the TRAPEZIUM STRIPS:
% 7. Display figure
clf, hold on;
plot(x, y_x(x), 'k--')
plot([a b], [0 0], 'k'), plot([0 0], [min( y_x(x) ) max( y_x(x))], 'k')
xlabel('x', 'FontWeight', 'bold'), ylabel('y(x)', 'FontWeight', 'bold')
title(['Numeric integration through Trapezium Rule of y(x)=' , y_xs , ' with ', num2str(n), ' slices ||| Result is ', num2str(S_t) '.'] , 'FontWeight', 'bold')
% 8. Display Trapezium strips
for x=a:dx:(b-dx);
y_x(x);
left = x; right = x+dx; bottom = 0; top1 = y_x(x); top2 = y_x(x+dx);
X = [left left right right]; Y = [bottom top1 top2 bottom]; %to create the shape
fill(X,Y, 'b', 'FaceAlpha', 0.3)
end
% 9. Display a smooth line in the graph
x = a:dx/100:b;
plot(x, y_x(x), 'b')
Comments on how to optimise and improve brevity this code would also be appreciated! Cheers
6 个评论
回答(3 个)
Richard Treuren
2014-4-17
编辑:Richard Treuren
2014-4-17
I changed the script of proecsm a bit so that it does work for different step sizes and some other changes in the area plot
clc;clear; close all
steps = 5; % number of steps
x = linspace(0,2*pi,steps*12); % create data
xs = linspace(0,2*pi,2*steps+1); % sample points
f = sin(x);
fs = sin(xs); % sample function
c(steps,3)=0;
for k = 1:steps
c(k,:) = polyfit(xs(2*k-1:2*k+1),fs(2*k-1:2*k+1),2); %fit coefficients
hold on
z = linspace(xs(2*k-1),xs(2*k+1),12);
y = c(k,1).*z.^2+c(k,2).*z+c(k,3);
area(z,y,'FaceColor',[0.6,1,1])
end
hold on
plot(x,f,'r','LineWidth',2) % plot function
hold on
plot(xs,fs,'bo','LineWidth',2) % plot sample points

1 个评论
Richard Treuren
2014-4-17
if you want to calculate the area (using simpson's rule) you can add the next lines to the script:
sim=0;
for i=1:steps
sim = sim + (xs(2*i+1)-xs(2*i-1))/6*(fs(2*i-1)+4*fs(2*i)+fs(2*i+1));
simp(i)= sim; %variable for plotting
end
sim
bym
2013-3-31
here is what I have done

clc;clear; close all
x = linspace(0,4*pi); % create data
f = sin(x);
xs = linspace(0,4*pi,11); % sample points
fs = sin(xs); % sample function
plot(x,f,'g') % plot function
hold on
plot(xs,fs,'bo') % plot sample points
xp = reshape(x,[],5)'; % prepare for plotting
xp(5,21)=x(end); % duplicate end point
xp(1:4,21)=xp(2:5,1); % duplicate end points
c(5,3)=0; %preallocate
for k = 1:5
c(k,:) = polyfit(xs(2*k-1:2*k+1),fs(2*k-1:2*k+1),2); %fit coefficients
fill([xp(k,1) xp(k,:) xp(k,end)],[0 polyval(c(k,:),xp(k,:)) 0] ...
,'c', 'FaceAlpha',.1)
end
ylim([-1.25,1.25])
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Curve Fitting Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!