Why does 1 - 2/3 - 1/3 not equal zero?
20 次查看(过去 30 天)
显示 更早的评论
Try this:
>> 1 - 2/3 - 1/3
MATLAB gets the wrong answer:
5.5511e-017
1 个评论
采纳的回答
Matt Fig
2011-1-20
Ned! I am sure you know that the reason why (1 - 2/3 - 1/3) ~=0 is that MATLAB does its work in floating point arithmetic, not in exact arithmetic.
更多回答(3 个)
Doug Hull
2011-1-21
As is mentioned frequently in the newsgroup, some floating point numbers can not be represented exactly in binary form. So that's why you see the very small but not zero result. See EPS.
The difference is that 0:0.1:0.4 increments by a number very close to but not exactly 0.1 for the reasons mentioned below. So after a few steps it will be off whereas [0 0.1 0.2 0.3 0.4] is forcing the the numbers to their proper value, as accurately as they can be represented anyway.
a=[0 0.1 0.2 0.3 0.4];
b=[0:.1:.4];
as=sprintf('%20.18f\n',a)
as =
0.000000000000000000 % ==
0.100000000000000010 % ==
0.200000000000000010 % ==
0.299999999999999990 % ~= bs !
0.400000000000000020 % ==
bs=sprintf('%20.18f\n',b)
bs =
0.000000000000000000 % ==
0.100000000000000010 % ==
0.200000000000000010 % ==
0.300000000000000040 % ~= as !
0.400000000000000020 % ==
% -and-
format hex;
hd=[a.',b.']
hd =
0000000000000000 0000000000000000 % ==
3fb999999999999a 3fb999999999999a % ==
3fc999999999999a 3fc999999999999a % ==
3fd3333333333333 3fd3333333333334 % ~= !
3fd999999999999a 3fd999999999999a % ==
If you're trying to compare two floating-point numbers, be very careful about using == to do so. An alternate comparison method is to check if the two numbers you're comparing are "close enough" (as expressed by a tolerance) to one another:
% instead of a == b
% use:
areEssentiallyEqual = abs(a-b) < tol
% for some small value of tol relative to a and b
% perhaps defined using eps(a) and/or eps(b)
You can see this same sort of behavior outside MATLAB. Using pencil and paper (or a chalkboard, or a whiteboard, etc.) compute x = 1/3 to as many decimal places as you want. The number of decimal places must be finite, however. Now compute y = 3*x. In exact arithmetic, y would be exactly 1; however, since x is not exactly one third but is a rounded approximation to one third, y will not be exactly 1.
For a readable introduction to floating point arithmetic, look at Cleve's Corner article from 1996: Floating Points (PDF)
For more rigorous and detailed information on floating point arithmetic, read the following paper: What Every Computer Scientist Should Know About Floating Point Arithmetic.
5 个评论
Amir
2011-7-29
I wrote my code wondering if matlab must have it!
function [am] = cancelout(a,tol) %for small gain probelm
for k=1:size(a,1)
for m=1:size(a,2)
[z,gain] =zero(a(k,m));
if ( abs(gain)<tol)
a(k,m)=0;
end
gain=NaN;
end
end
am=a;
Derek O'Connor
2011-7-29
Ned,
Let me add to the confusion by asking
1. Why does en1 = (1 - 2/3) - 1/3 = 5.5511e-017 = 2^(-54) = eps/2^2?
2. Why does en2 = 1 - (2/3 + 1/3) = 0?
3. Why does Kahan's
a = 4/3; b = a-1; c = b+b+b; ek = 1-c = 2.2204e-016 = 2^(-52) = eps?
An explanation of Kahan's result is given on page 7 of:
The difficulties in defining machine precision are discussed by Nick Higham and Cleve Moler here:
Derek O'Connor
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Logical 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!