Making a magic square matrix singular
7 次查看(过去 30 天)
显示 更早的评论
We know that any magic square matrix of odd order is not singular. When each element of the matrix is subtracted by the sum-average of the total elements, then this perturbed matrix becomes singular, and the determinant of the resulted matrix is zero. That is,
det(magic(n)-ones(n)*((1+n*n)/2)) = 0, for any odd n.
Can anyone help me the proof or find literture in this subject?
8 个评论
采纳的回答
Ahmed A. Selman
2013-4-1
I don't think details are required since
A=magic(n)-ones(n)*((1+n*n)/2)
is changed into an antisymmetric matrix, any such A matrix must satisfy (basic math.. etc)
det(A) = -1^n * det(A)
since n is odd, det(A) must be zero (thus, A is singular). Changing A from magic(n) to (magic(n)-ones(n)*((1+n*n)/2) ) as mentioned in the question is enough to destroy the symmetry of A.
Yet, since this is too basic, and it works the same for magic(n) with n is odd or even, (also, produces antisymmetric), I'm afraid you already know this. I tried (quickly, to be honest) other means like the nice arguments above, but didn't got anything useful so I thought to share, it might help. Regards.
7 个评论
Ahmed A. Selman
2013-4-2
And this basic, primitive derivation, is found (must be found) in any textbook dealing with matrices and determinant properties. I did find it on Wolfram search that:
det(-A)=(-1)^n det(A)
from: <http://mathworld.wolfram.com/Determinant.html >
and found that for antisymmetric matrix A then
Aij= - Aji
from
The rest is, however, a plane and direct substitution.
Matt J
2013-4-8
编辑:Matt J
2013-4-9
Ahmed,
We established several Comments ago that Aij=-Aji is not satisfied for the modified magic square matrix.
There may be a way to extend the determinant equation to the weirder kind of asymmetry that this matrix exhibits, but it looks like it would take some work. Showing that ones(n,1) is a null-vector of the matrix seems to me like the quicker proof, not to mention that it also covers even-valued n.
更多回答(3 个)
Jonathan Epperl
2013-4-1
The row-sum, column-sum and diag-sum of a magic square are all the same, and the magic square uses all the integeres 1:n^2. Thus, the sum of all elements must be n^2*(n^2+1)/2, and each row, column, diag sum must be n*(n^2+1)/2.
Now look at what you wrote, multiply it from the right by ones(n,1), and you'll see that you will get zero. Voila, thus the matrix is singular.
2 个评论
Jonathan Epperl
2013-4-5
编辑:Jonathan Epperl
2013-4-22
Just to fill that hole in your knowledge: A square Matrix A is singular if and only if
- inv(A) does NOT exist
- det(A)==0
- The range of A is not all of R^n
- THE KERNEL OF A IS NONTRIVIAL
- ...
That last point there means that if you can find a nonzero vector v such that A*v==0, then you have proven that A is singular, and ones(n,1) is such a vector.
Matt J
2013-4-1
编辑:Matt J
2013-4-1
Let x=ones(n,1)/n and P be the perturbed matrix. You can verify that
P*x=0
proving that P is singular.
5 个评论
Matt J
2013-4-1
编辑:Matt J
2013-4-1
I do not think the calculation of det(P) is numerically unstable since elements of P in the case are all integers.
You don't know that MATLAB computes determinants in steps that always result in integers. In fact, I've just learned that MATLAB uses LU factorization, which is consistent with the results Walter and I have been getting,
>> P=magic(9)-41; [L,U]=lu(P); det(L)*det(U)
ans =
-0.3211
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!