Optimization of vectors with optimization toolbox

5 次查看(过去 30 天)
hello, new to optimization toolbox here :)
i wolud like to optimize 2 vectors:
omega (100X1)
T (100X1)
i have 2 constrains on this vectors
-200<omega>200
-60<T<60
H it's a matrix equal to :H = [omega 1 T]
and M = transpose(H)* H;
i wrote my M matrix result alredy.
my code look like this:
omega = optimvar('omega',100,'LowerBound',-200,'UpperBound',200);
T = optimvar('Temperature',100,'LowerBound',-60,'UpperBound',60);
t = transpose(0:1:100-1);
M = [sum(omega.*omega) sum(omega) sum(omega.*T) ; ...
sum(omega) sum(ones(length(omega),1)) sum(T) ;
sum(omega.*T) sum(T) sum(T.*T) ];
i want to optimize omega and T with this two objective functions
1.trace(M)
2.Det(M)
J1 = trace(M);
J2 = det(M);
prob = optimproblem("ObjectiveSense",'maximize');
prob.Objective =J1;
sol = solve(prob)
my questions:
  1. i would like to add 2 more constrains, about domega/dt and for dT/dt. any one have idea how to do that?
  2. when i try to solve this problem, i get :The problem is non-convex. how sould i continue?
  3. when i try to calculate det(M) i get this error : Check for missing argument or incorrect argument data type in call to function 'det'. can i even use this function with optimization varible ?
  7 个评论
eden meirovich
eden meirovich 2020-12-21
i know the solution (i try to max the trace and the det, not minimize).
i just want to get this "easy" one, before i continue to one i don't know

请先登录,再进行评论。

回答(1 个)

Matt J
Matt J 2020-12-21
编辑:Matt J 2020-12-21
i would like to add 2 more constrains, about domega/dt and for dT/dt. any one have idea how to do that?
You can use diff() to implement constraints on numerical derivatives, e.g.,
omega = optimvar('omega',100,'LowerBound',-200,'UpperBound',200);
T = optimvar('Temperature',100,'LowerBound',-60,'UpperBound',60);
domega=diff(omega); %derivatives
dT=diff(T);
C.con_domega=lower_domega<=domega & domega<=upper_domega; %bounds on derivatives
C.con_dT=lower_dT<=dT & dT<=upper_dT
As long as all these constraints are linear, you can then use prob2matrices,
to assist in the conversion from the problem-based to the solver-based framework. E.g.,
sol0.omega=omega0; %initial guesses
sol0.T=T0;
prob=prob2matrices({omega,T},'Constraints',C,'sol0',sol0);
prob.x0=reshape(prob.x0,[],2);
prob.solver='fmincon';
prob.fun=@(x) sum(x.^2,'all'); %equivalent to trace M
x1=fmincon(prob);
e = ones(length(omega),1);
prob.fun=@(x) det([x,e].' * [x,e]);
x2=fmincon(prob);

类别

Help CenterFile Exchange 中查找有关 Get Started with Optimization Toolbox 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by