Hallo everyone, I'm trying to simulate a free fall-project, from the stratosphere (about 50 km) to the ground. So, in order to conclude an appropriate solution, drag must be put in consideration. I've allready found a proper solution for the Euler-method, but not for the ode45-method. Furthermore I need to put the [vector-]solutions of the acceleration (the differnecial) for every single calculation-step, in the velocity terms, I mean you could realize this one easy, by putting a while-slope in the code, that the steps would repeat itself until completion. But now to my issue, I've tried many approches with the ode45-method, but non of those have worked out.
Here my code:
function [a] = Test2
start=[0];
tspan=[0 100];
[t,A] = ode45(@Beschleunigung, tspan, start);
plot(t,A(:,1));
end
function dv = Beschleunigung(t, v)
g = 9.81;
m = 120;
c_w = 0.28;
A = 2.7;
rho = 1.2041;
dt = 0.5;
hi = 40000;
vi = 0;
t = [0];
h = [hi];
v = [vi];
a = [0];
dv = zeros(2,1);
a=dv(1,end);
dv(1,end+1) = g-(1/2*m)*c_w*A*rho*v^2;
v(end+1)=v(end)+dv(1,end)*dt;
h(end+1)=h(end)+v(end)*dt;
t(end+1)=t(end)+dt;
end