Fourier transform using Convolution

5 次查看(过去 30 天)
Nurhan Aydinalp
Nurhan Aydinalp 2020-12-23
编辑: Paul 2020-12-24
I have two signals x(t) = sin(2.*pi.*t)/(pi.*t) and y(t) = x(t) I want to calculate z(t) = x(t)*y(t) and z(JW).I should plot x(t), x(JW), y(t), y(JW) and z(t), z(JW) using subplot. z(JW)=(1/(2pi))*(convolution(x(t),y(t))), I have the following code:w = [-6.*pi 6.*pi];
syms x(t)
x(t) = sin(2.*pi.*t)./(pi.*t);
subplot(3,2,1)
fplot(t,x(t));
title('x(t) vs t');
xlabel('time');
ylabel('x(t)')
X_J_W = fourier(x(t));
subplot(3,2,2)
fplot(X_J_W,w);
title('X(JW) vs w')
ylabel('X(JW)')
xlabel('W')
syms y(t)
y(t) = sin(2.*pi.*t)./(pi.*t);
subplot(3,2,3)
fplot(t,y(t));
title('y(t) vs t');
xlabel('time');
ylabel('y(t)')
Y_J_W = fourier(y(t));
subplot(3,2,4)
fplot(Y_J_W,w);
title('Y(JW) vs w')
ylabel('Y(JW)')
xlabel('W')
syms z(t)
z(t) = x(t).*y(t);
subplot(3,2,5)
fplot(z(t));
C_X_Y = conv(X_J_W,Y_J_W,'full');
Z_J_W = (1./(2.*pi)*(C_X_Y));
subplot(3,2,6)
fplot(Z_J_W,w)
in the convolution part I get
Error using conv2
Invalid data type. First and second arguments must be numeric or logical.
Error in conv (line 43)
c = conv2(a(:),b(:),shape);
and I do not know how to fix it.

回答(1 个)

Matt J
Matt J 2020-12-23
You must use int to implement a symbolic convolution integral. conv is for numeric convolution.
  12 个评论
Matt J
Matt J 2020-12-24
Truncating the convolution seems to help:
syms x(t) y(t) z(t) c(t) X(w) Y(w) tau
x(t) = sin(2.*pi.*t)./(pi.*t);
y(t) = sin(2.*pi.*t)./(pi.*t);
z(t)=x(t).*y(t);
X(w) = fourier(x(t));
Y(w) = fourier(y(t));
c(t)=int(x(tau).*y(t-tau),tau,-100,+100);
fplot(c(t))
Paul
Paul 2020-12-24
编辑:Paul 2020-12-24
Nurhan,
Why compute the convolution of x(t) and y(t)? I thought the problem at hand is related to the product of x(t) and y(t).
If z(t) = x(t)y(t), then
Z(w) = conv(X(w),Y(w))/2/pi:
>> syms u
>> Z(w)=int(X(u)*Y(w-u),u,-inf,inf)/2/pi;
>> Z(w)
ans =
-((heaviside(- w - 4*pi)*(w + 4*pi))/2 - w*heaviside(-w) + (heaviside(4*pi - w)*(w - 4*pi))/2)/pi
>> fplot(Z(w),[-20 20])
The result can be confirmed by numerically computing the Fourier transform of z(t):
>> fun=matlabFunction(z(t)*exp(-1j*w*t));
>> wr=-20:.1:20;
>> for ii=1:numel(wr),q(ii)=integral(@(t)fun(t,wr(ii)),-20,20);end
>> hold on
>> plot(wr,real(q),'ro'),grid

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Formula Manipulation and Simplification 的更多信息

产品


版本

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by