help with error in my code

2 次查看(过去 30 天)
Hi can someone help me understand the mistake in my code, i followed the correct syntax from https://uk.mathworks.com/help/bioinfo/ref/classperf.html
i keep getting the error
operator "==" not supported for operands of type "cvpartition"
error in line 24
test = (indices == 1)
k = 4;
n = 699; %sample lenght
rng ('default')
indices = cvpartition(n,'kfold', k);
for i = 1:k
test= (indices == i); train = ~test;
class = classify(InputVariable(test,:),InputVariable(train,:),OutputVariable(train,:));
classperf(cp,class,test);
end
cp.ErrorRate
plotconfusion(testTarget, testY)
  4 个评论
Stephen23
Stephen23 2021-1-2
编辑:Stephen23 2021-1-2
Original question by Dilpreet kaur retrieved from Google Cache:
help with error in my code
Hi can someone help me understand the mistake in my code, i followed the correct syntax from https://uk.mathworks.com/help/bioinfo/ref/classperf.html
i keep getting the error
operator "==" not supported for operands of type "cvpartition"
error in line 24
test = (indices == 1)
k = 4;
n = 699; %sample lenght
rng ('default')
indices = cvpartition(n,'kfold', k);
for i = 1:k
test= (indices == i); train = ~test;
class = classify(InputVariable(test,:),InputVariable(train,:),OutputVariable(train,:));
classperf(cp,class,test);
end
cp.ErrorRate
plotconfusion(testTarget, testY)
Rena Berman
Rena Berman 2021-5-6
(Answers Dev) Restored edit

请先登录,再进行评论。

采纳的回答

Image Analyst
Image Analyst 2020-12-31
I get this:
k = 4;
n = 699; %sample lenght
rng ('default')
indices = cvpartition(n,'kfold', k)
indices =
K-fold cross validation partition
NumObservations: 699
NumTestSets: 4
TrainSize: 525 524 524 524
TestSize: 174 175 175 175
You're not using indices correctly. It's an object, not a list of indices. If you want a listof indices, use randperm().

更多回答(1 个)

Walter Roberson
Walter Roberson 2021-1-1
编辑:Walter Roberson 2021-1-2
cvpartition does not return indices.
rng ('default')
nfold = 4;
cvfolds = cvpartition(699,'kfold', nfold);
cp = classperf(OutputVariable); % initializes the CP object
for i = 1:nfold
test = cvfolds.test(i);
train = cvfolds.training(i);
class = classify(InputVariable(test,:), InputVariable(train,:), OutputVariable(train,:));
classperf(cp, class, test);
end
cp.ErrorRate

类别

Help CenterFile Exchange 中查找有关 Get Started with Statistics and Machine Learning Toolbox 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by