Numerical integration and NaN
2 次查看(过去 30 天)
显示 更早的评论
I want to calculate the following integral:
integral( pdf(data_one) / pdf(data_two) )
I managed to do this, but I had to resort to a hack to avoid divisions by zero. This hack works but creates deviations that annoy me - what is the proper way to do this?
data_axis = 1:5;
data_one = [1,2,3,4,5];
data_two = [1,1,1,1,5];
% Calculate probability densities
pdf_one = histc(data_one,data_axis); % [0.2,0.2,0.2,0.2,0.2]
pdf_two = histc(data_two,data_axis); % [0.8,0.0,0.0,0.0,0.2]
% HACK: Histc may have generated 0-buckets
%pdf_one = (pdf_one + 0.1);
%pdf_two = (pdf_two + 0.1);
% Normalize the result
pdf_one = pdf_one./sum(pdf_one);
pdf_two = pdf_two./sum(pdf_two);
complicated_integral = trapz(pdf_one./pdf_two);
0 个评论
回答(1 个)
Walter Roberson
2011-5-11
Probability Density is not defined for discrete distributions.
Not every probability distribution has a density function: the distributions of discrete random variables do not; nor does the Cantor distribution, even though it has no discrete component, i.e., does not assign positive probability to any individual point.
and
If a probability distribution admits a density, then the probability of every one-point set {a} is zero; the same holds for finite and countable sets.
This implies that you are asking to calculate something which is not defined, or else that your calculation is incorrect, perhaps attempting to sample the counts at a point rather than over a range.
5 个评论
Richard Crozier
2011-5-18
If you know what the underlying form of the pdf of the data from some scientific knowledge of the system from which you have sampled the data, could you not fit the distribution to the datasets and integrate the resulting continuous functions? Of course the accuracy of this is doubtful for some distributions, e.g. an exponential distribution.
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!