Matlab unable to find solution to cubic polynomial

1 次查看(过去 30 天)
The following cubic equation has three roots.
syms a
solve((1225*a)/2 - 6125 == ((2*a - 35)^2*(60*a + 4200))/840, a)
Matlab's output is:
root(z^3 + 35*z^2 - (8575*z)/2 + 42875, z, 1)
root(z^3 + 35*z^2 - (8575*z)/2 + 42875, z, 2)
root(z^3 + 35*z^2 - (8575*z)/2 + 42875, z, 3)
Can cubic equations like this be solved analytically in Matlab?

采纳的回答

James Tursa
James Tursa 2021-2-1
编辑:James Tursa 2021-2-1
Tell the solve( ) function that the max degree of the polynomial is 3 to force explicit solutions for the result:
syms a
p = (1225*a)/2 - 6125 - ((2*a - 35)^2*(60*a + 4200))/840
solve(p,a,'MaxDegree',3)
which gives
ans =
28175/(18*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) + ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3) - 35/3
- 28175/(36*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) - ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3)/2 - (3^(1/2)*(28175/(18*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) - ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3))*1i)/2 - 35/3
- 28175/(36*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) - ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3)/2 + (3^(1/2)*(28175/(18*(- 5187875/108 + (432^(1/2)*659937359375^(1/2)*1i)/432)^(1/3)) - ((432^(1/2)*659937359375^(1/2)*1i)/432 - 5187875/108)^(1/3))*1i)/2 - 35/3
Then you can also note
>> simplify(ans)
ans =
(35*2^(1/3)*(- 121 - 1077^(1/2)*3i)^(1/3))/6 + (35*2^(1/3)*(- 121 + 1077^(1/2)*3i)^(1/3))/6 - 35/3
- (35*2^(1/3)*(- 121 + 1077^(1/2)*3i)^(1/3))/12 - (35*2^(1/3)*(1 + 3^(1/2)*1i)*(- 121 - 1077^(1/2)*3i)^(1/3))/12 + (2^(1/3)*3^(1/2)*(- 121 + 1077^(1/2)*3i)^(1/3)*35i)/12 - 35/3
- (35*2^(1/3)*(- 121 + 1077^(1/2)*3i)^(1/3))/12 + (35*2^(1/3)*(- 1 + 3^(1/2)*1i)*(- 121 - 1077^(1/2)*3i)^(1/3))/12 - (2^(1/3)*3^(1/2)*(- 121 + 1077^(1/2)*3i)^(1/3)*35i)/12 - 35/3
>> imag(ans)
ans =
0
0
0
So you can pick off the real part for the answer.

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Polynomials 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by