custom regression (multiple output)

1 次查看(过去 30 天)
jaehong kim
jaehong kim 2021-2-12
Hi, I am working on a custom regression neural network.
Inputs size=2 and Output size=6 // Number of Data =25001
However, after a certain iteration, it was confirmed that all Data(25001) outputs are the same.
x axis=Target // y axis=output
Initially, the output is different, but it seems that the output is the same after a while.
My code is here.
--------------------------------------------------------------------------------------------
clear,clc,close all
Data=readmatrix('sim_linear.xlsx');
Y_at=Data(:,2);
Y_ft=Data(:,3);
F_at=Data(:,4);
F_ft=Data(:,5);
P_cot=Data(:,6);
T_cot=Data(:,7);
T_bt=Data(:,8);
F_et=Data(:,9);
T_et=Data(:,10);
PW_t=Data(:,11);
idx=randperm(numel(Y_at));
Y_at=Y_at(idx);
Y_ft=Y_ft(idx);
F_at=F_at(idx);
F_ft=F_ft(idx);
P_cot=P_cot(idx);
T_cot=T_cot(idx);
T_bt=T_bt(idx);
F_et=F_et(idx);
T_et=T_et(idx);
PW_t=PW_t(idx);
Input=cat(2,Y_at,Y_ft);
Output=cat(2,F_ft,T_cot,T_bt,F_et,T_et,PW_t);
Inputs=transpose(Input);
Outputs=transpose(Output);
layers = [
featureInputLayer(2,'Name','in')
fullyConnectedLayer(64,'Name','fc1')
tanhLayer('Name','tanh1')
fullyConnectedLayer(32,'Name','fc2')
tanhLayer('Name','tanh2')
fullyConnectedLayer(16,'Name','fc3')
tanhLayer('Name','tanh3')
fullyConnectedLayer(8,'Name','fc4')
tanhLayer('Name','tanh4')
fullyConnectedLayer(6,'Name','fc5')
];
lgraph=layerGraph(layers);
dlnet=dlnetwork(lgraph);
iteration = 1;
averageGrad = [];
averageSqGrad = [];
learnRate = 0.005;
gradDecay = 0.75;
sqGradDecay = 0.95;
output=[];
dlX = dlarray(Inputs,'CB');
for it=1:500
iteration = iteration + 1;
[out,loss,NNgrad]=dlfeval(@gradients,dlnet,dlX,Outputs);
[dlnet.Learnables,averageGrad,averageSqGrad] = adamupdate(dlnet.Learnables,NNgrad,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);
if mod(it,100)==0
disp(it);
end
end
function [out,loss,NNgrad,grad1,grad2]=gradients(dlnet,dlx,t)
out=forward(dlnet,dlx);
loss2=sum((out(1,:)-t(1,:)).^2)+sum((out(2,:)-t(2,:)).^2)+sum((out(3,:)-t(3,:)).^2)+sum((out(4,:)-t(4,:)).^2)+sum((out(5,:)-t(5,:)).^2)+sum((out(6,:)-t(6,:)).^2);
loss=loss2;
[NNgrad]=dlgradient(loss,dlnet.Learnables);
end
-------------------------------------------------------------------------------------------------------------------------------------------------
Thanks for reading my question. I hope that a great person can answer.

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

产品


版本

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by