IFFT slow down with using gpuArray
3 次查看(过去 30 天)
显示 更早的评论
Two sets of data A (4096 x 1024) matrix and B (32768 x 1024) matrix have been transferred to the GPU using gpuArray. A is passed into the FFT function and has shown a significant speed increase in comparison to the CPU A data. B is passed into the IFFT function and has shown approximately a 50% decrease in efficiency in comparison to the CPU B data. Is there a reason why the IFFT function does not have the speed increase proportional to the FFT function? I understand the sizes differ but I do no understand why the GPU implemented IFFT is slower then the CPU implemented IFFT. Also, the tic toc function and the run and time function were used to time the results. Thank you for your help.
4 个评论
James Lebak
2013-5-3
编辑:James Lebak
2013-5-3
When I time this on MATLAB R2013a, 3.5 GHz Xeon, with a Tesla C2075 GPU, I see 0.36 s for the IFFT of a 32768x1024 matrix on the CPU and 0.051s on the GPU. Here is the code I used:
x=gpuArray.ones(32768,1024);
gd=gpuDevice;
tic;y=ifft(x);wait(gd);toc
xc=gather(x);
tic;y=ifft(xc);toc
And the output:
Elapsed time is 0.050705 seconds.
Elapsed time is 0.364836 seconds.
I would be interested to know what this code shows you, and also whether having the other array that you mentioned in memory changes the performance. I didn't see a change, but I don't have access to this specific card that you have.
采纳的回答
Matt J
2013-5-3
What graphics card do you have? How much RAM does it have? It could be that the larger array is just having a harder time because of memory constraints.
10 个评论
Matt J
2013-5-3
Also, Matt J, my apologizes about the program. The code I attached is part of a project. Is there a way to attach .m files in this forum?
Just give values for
NumberofAlines = pdHeader(1);
nAlineLength = pdHeader(2);
nPaddingFactor = pdInit(4);
I assume that pdBuffer is the 32768x1024 array?
更多回答(1 个)
James Lebak
2013-5-3
编辑:James Lebak
2013-5-4
The GeForce GT630M is a mobile graphics card. Frequently, these cards don't perform as well in double-precision as they do in single-precision. If your application can handle single-precision, you can try the IFFT in single and see if that gives you better performance. If you need double precision performance, you might want to try a different card.
This especially applies if the card in question is compute capability 3.0. You can find out the compute capability of the card in MATLAB from the structure returned by 'gpuDevice'.
Edit: removed incorrect identification of the 630M.
5 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 GPU Computing in MATLAB 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!