How to find the derivative of a function with sums and conditions?
23 次查看(过去 30 天)
显示 更早的评论
Hi
I'm trying to solve this problem, in my function, that i show you below.
function p_out = quantreg_descent(x,y,tau)
%
%
% ---------- Quantile Regression -------------
%
%
pmean=x\y;
rho_fun = @(r) sum(abs(r).*abs(tau-(r<0)));
p_fun = @(p) rho_fun(y-x*p);
x0 = pmean;
tol = 10^-5;
kmax = 500;
meth = 3;
p_out = descent(p_fun, diff_p_fun, x0, tol, kmax, meth);
end
What i need to do is to put into the 'descent' function the p_fun and the diff_p_fun that should be his derivative. I've tried to use symbolic toolbox but it seems that matlab has problems with symbolic functions like this.
To be sure i will put all the code of the other functions.
function fmin = descent(fun, grad, x0, tol, kmax, meth, varargin)
%
% DESCENT Metodo di discesa per il calcolo di minimi.
%
% [x, err, iter]= descent(fun, grad, x0, tol, kmax, meth, hess)
% approssima un punto di minimo della funzione 'fun' mediante il metodo
% di discesa con direzioni di Newton (meth=1), BFGS (meth=2),
% del gradiente (meth=3) o del gradiente coniugato con beta_k di
% Fletcher and Reeves (meth=41), beta_k di Polak and Ribiere (meth=42),
% beta_k di Hestenes and Stiefel (meth=43).
% - Il passo è costruito con la tecnica di backtracking
% - fun, grad ed hess (quest'ultima usata solo se METH=1) sono function
% handle associati alla funzione obiettivo, al suo gradiente
% ed alla matrice Hessiana.
% - Se mets=2, hess è una matrice approssimante l'Hessiana nel punto
% iniziale x0 della successione.
% - tol è la tolleranza per il test d'arresto e kmax è il numero
% massimo di iterazioni.
%
% Si richiama le function backtrack.m
%% Verifica sui parametri di imput
if nargin>6
if meth==1, hess=varargin{1};
elseif meth==2, H=varargin{1};
end
end
%% Definizione parametri
err = tol+1; k = 0; xk = x0(:); gk = grad(xk); dk = -gk;
eps2 = sqrt(eps);
%% Routine
while err>tol && k< kmax
% Metodi
if meth==1
H = hess(xk); dk = -H\gk; % Newton
elseif meth==2
dk = -H\gk; % BFGS
elseif meth==3
dk = -gk; % gradient
end
[xk1,~] = backtrack(fun,xk,gk,dk);
gk1 = grad(xk1);
if meth==2 % BFGS update
yk = gk1-gk; sk = xk1-xk; yks = yk'*sk;
if yks>eps2*norm(sk)*norm(yk)
Hs = H*sk;
H = H+(yk*yk')/yks - (Hs*Hs')/(sk'*Hs);
end
elseif meth>=40 % CG upgrade
if meth == 41
betak = (gk1'*gk1)/(gk'*gk); % FR
elseif meth == 42
betak = (gk1'*(gk1-gk))/(gk'*gk); % PR
elseif meth == 43
betak = (gk1'*(gk1-gk))/(dk'*(gk1-gk)); % HS
end
dk = -gk1+betak*dk;
end
xk = xk1; gk = gk1; k = k+1; xkt = xk1;
for i=1:length(xk1); xkt(i)=max([abs(xk1(i)),1]);
end
err = norm((gk1.*xkt)/max([abs(fun(xk1)),1]),inf);
end
x = xk; iter = k;
fmin = fun(x);
%% Messaggio di errore
if (k==kmax && err > tol)
fprintf(['descent si e'' arrestato senza aver ',...
'soddisfatto l''accuratezza richiesta, avendo\n',...
'raggiunto il massimo numero di iterazioni\n']);
end
and the backtrack function
function [x, alphak] = backtrack(fun, xk, gk, dk, varargin)
%
% BACKTRACK Metodo backtracking per line-search
%
% [x, alphak] = backtrack(fun, xk, gk, dk) calcola x_{k+1} = x_k+alpha_k
% e d_k del metodo di discesa, in cui alpha_k è costruito con la tecnica
% di backtracking, con sigma = 1.e-4 e rho = 1/4.
%
% [x, alphak] = backtrack(fun, xk, gk, dk, sigma, rho) permette di
% precisare i valori dei parametri sigma e rho.
% - Tipicamente 1*e-4<sigma<0.1 e 1/10<rho<1/2
% - 'fun' é un function handle associato alla funzione obiettivo.
%
% xk contiene l'elemento x_k della successione, gk il gradiente di 'fun'
% in xk e dk la direzione d_k.
%% Verifica sul numero di imput
if nargin==4
sigma = 1.e-4; rho = 1/4;
else
sigma=varargin{1}; rho=varargin{2};
end
%% Parametri ed inizializzazione
alphamin = 1.e-5; % valore minimo per il passo alpha
alphak = 1; fk = fun(xk);
k = 0; x = xk+alphak*dk;
%% Routine
while fun(x)>fk+sigma*alphak*gk'*dk && alphak>alphamin
alphak = alphak*rho;
x = xk+alphak*dk; k = k+1;
end
end
sample values of x,y, and tau are the seguent:
x_1 = [1:17]';
x = [ones(17,1), x_1];
y = [27.2; 27.3; 27.4; 27.8; 28.2; 28.6; 29.0; 29.3; 29.3; 29.4; 29.6; 29.8; 30.2; 30.5; 30.7; 30.7; 30.8];
tau = 0.5;
Hope you could help me
8 个评论
Walter Roberson
2021-3-16
If p is a vector, then with diff_p_fun being the derivative of p_fun, what variable is the derivative taken over?
Do you think that there is any other possibility to solve this problem
No.
By examination we can see that
sum(abs(r).*abs(tau-(r<0)))
can be rewritten in terms of the sum of a number of piecewise() terms that together get rid of the abs() calls
piecewise(r < 0 & tau-1 <= 0, -r .* -(tau-1), ...
r < 0 & tau-1 > 0, -r .* (tau-1), ...
r >= 0 & tau <= 0, r .* -tau, ...
r >= 0 & tau > 0, r .* tau)
and rho_fun is the sum of those terms over all r values. The summation can be rewritten to move tau mostly outside. You can see that each of the piecewise terms is linear in r, so the summation will be linear in any variable contained within r that appears linearly in r
rho_fun is invoked on y-x*p with y and x constant. Whether p is scalar or column vector, x*p is linear in the variables contained in p, and y minus that does not change the linearity. Then when you put y-x*p through rho_fun the resulting summation is going to be linear in the variables in p, except as modified by the action of the piecewise boundary conditions.
Now take the derivative of the rho_fun to try to satisfy the requirement that diff_p_fun is the derivative of p_fun. But with respect to which variable? Pick any one of the variables and since each of the terms is linear, the derivative is constant.
Thus, diff_p_fun is going to be a series of piecewise constants. But all of your methods that actually use the derivative, assume that the derivative is a continuous function.
采纳的回答
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Assumptions 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!