How do I solve a system of nonlinear differential equations like the one below?
2 次查看(过去 30 天)
显示 更早的评论
As seen below (ode1 ode2 ode3) are my equations and c_1 to c_9 are just some constants which will be later determined. Is there any way to solve this without numerical methods? Thank you!
syms x(t) y(t) z(t);
c_1 = 1
c_2 = 2
c_3 = 1
c_4 = 1
c_5 = 1
c_6 = 1
c_7 = 1
c_8 = 1
c_9 = 1
ode1 = diff(x,t) == c_1*(c_3-x) + c_2*(x-y);
ode2 = diff(y,t) == c_4*(x-y) - c_5*c_6*y*(1-z) + c_7*c_6*exp(c_8 - c_9*z);
ode3 = diff(z,t) == c_5*y*(1-z) - exp(c_8 - c_9*z);
odes = [ode1; ode2; ode3]
cond1 = y(0) == 0;
cond2 = x(0) == 0;
cond3 = z(0) == 0;
conds = [cond1 cond2 cond3];
0 个评论
采纳的回答
Star Strider
2021-3-18
Add t and Y to the syms declaration, and add these to the end of the posted code:
[VF,Subs] = odeToVectorField(odes);
odefcn = matlabFunction(VF, 'Vars',{t,Y});
Then use ‘odefcn’ with the numerical ODE integrator of your choise (such as ode45) to integrate them numerically.
Use the ‘Subs’ variable to determine the variable assignment order in the function and in the outputs of the integration.
2 个评论
Star Strider
2021-5-2
As always, my pleasure!
Try this —
syms x(t) y(t) z(t) t Y
c_1 = 1
c_2 = 2
c_3 = 1
c_4 = 1
c_5 = 1
c_6 = 1
c_7 = 1
c_8 = 1
c_9 = 1
ode1 = diff(x,t) == c_1*(c_3-x) + c_2*(x-y);
ode2 = diff(y,t) == c_4*(x-y) - c_5*c_6*y*(1-z) + c_7*c_6*exp(c_8 - c_9*z);
ode3 = diff(z,t) == c_5*y*(1-z) - exp(c_8 - c_9*z);
odes = [ode1; ode2; ode3]
[VF,Subs] = odeToVectorField(odes)
odefcn = matlabFunction(VF, 'Vars',{t,Y});
[t,y] = ode45(odefcn, [0 50], zeros(1,3)+1E-8);
figure
plot(t, y)
grid
legend(string(Subs), 'Location','best')
ylim([-1 1]*5)
.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!