How can I simplify a symbolic expression?

1 次查看(过去 30 天)
I have computed orthonormal polynomials using Gram-Schmidt process.
I got the following last polynomial,
How do I simplify it? I used simplifyFraction(P10), but still need to simplify.
P10= -(0.000000000000000000000000000000131072*(- 1.5154155839676911728909442039037e+34*x^10 + 8.2506771081142959211403787378745e+34*x^9 - 1.8992595448506783923507009086271e+35*x^8 + 2.3655495760953774286575822531395e+35*x^7 - 1.652095984482293770493859931794e+35*x^6 + 5.3305646291987002322965016172684e+34*x^5 + 7.0517607813983145020182411184835e+33*x^4 - 1.353163416021423788305989629406e+34*x^3 + 5.2851909224935648181523245483154e+33*x^2 - 950949168750141165645381083597780.0*x + 67958017824320084984093552226347.0))/(x^3*(5.0*x - 6.0)^2)

采纳的回答

Walter Roberson
Walter Roberson 2021-4-3
That is not a polynomial. Notice it has a division in it. It becomes infinite at 0 (triple root) and 1.2 (double root), which is not something that a polynomial with finite coefficients can have happen.
You can expand out the numerator, but that is not much of a change.
S = @(v) sym(v)
S = function_handle with value:
@(v)sym(v)
syms x
P10= -(S('0.000000000000000000000000000000131072')*(- S('1.5154155839676911728909442039037e+34')*x^10 + S('8.2506771081142959211403787378745e+34')*x^9 - S('1.8992595448506783923507009086271e+35')*x^8 + S('2.3655495760953774286575822531395e+35')*x^7 - S('1.652095984482293770493859931794e+35')*x^6 + S('5.3305646291987002322965016172684e+34')*x^5 + S('7.0517607813983145020182411184835e+33')*x^4 - S('1.353163416021423788305989629406e+34')*x^3 + S('5.2851909224935648181523245483154e+33')*x^2 - S('950949168750141165645381083597780.0')*x + S('67958017824320084984093552226347.0')))/(x^3*(S('5.0')*x - S('6.0'))^2)
P10 = 
[N,D] = numden(P10);
PS = simplify(expand(N))/D
PS = 
  4 个评论

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by