Compute Jacobian of a function using Automatic Differentiation

20 次查看(过去 30 天)
I have a vector valued function,, and would like to compute the jacobian of f using automatic differentiation. To accomplish this, my original idea was to use the deep learning toolbox and the built in 'dlgradient' function. However 'dlgradient' seems to only work with scalar valued functions. Is there a way to use automatic differentiation in Matlab to compute the Jacobian of a vector valued function?

回答(2 个)

Aditya
Aditya 2023-2-27
Hi,
Your observation is correct. You cannot use autodiff from Deep Learning Toolbox to compute Jacobian of a Vector valued function. However, You can use the jacobian from the Symbolic Math Toolbox to calculate the jacobian matrix of a vector valued function.
syms x y z
jacobian([x*y*z,y^2,x + z],[x,y,z])
ans = 
The above example computes the Jacobian Matrix of [x*y*z,y^2,x + z] with respect to [x,y,z].
  1 个评论
Nick
Nick 2023-5-5
I've found that jacobian from the Symblic Math Toolbox does not scale well to larger more complex functions in terms of copmutation time, espeically if I want to generate a function file for the function. I've started using CasADi instead because of this. Do you think there will be any functionality added that will make this possible in MATLAB any time soon?

请先登录,再进行评论。


Matt J
Matt J 2023-5-5

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by