Any ideas to find intersection between tan(t) and y1, y2, and y3 line equations?

10 次查看(过去 30 天)
Hello! I want to find intersection between tan(t) and the following line equations but my code instead of giving me two intersection points, just giving me one at origin(0,0)
t=0:0.01:5;
y1=0.5*t; y2=t; y3=2*t;
i1=intersect(tan(t),y1)
i2=intersect(tan(t),y2)
i3=intersect(tan(t),y2)
HINT: There should be 2 intersection points for each one of i1, i2, and i3!

采纳的回答

Mohammed Sayan
Mohammed Sayan 2013-7-14
ieq1=@(t) tan(t)-0.5*t;
ieq2=@(t) tan(t)-t;
ieq3=@(t) tan(t)-2*t;
i1=fzero(ieq1,[pi 3*pi/2]);
i2=fzero(ieq2,[pi 3*pi/2]);
i31=fzero(ieq3,pi/4);
i32=fzero(ieq3,[pi 3*pi/2]);

更多回答(1 个)

Matt J
Matt J 2013-7-14
I assume you are looking for solutions on [-pi/2, pi/2].
The only one of the functions that has an intersection anywhere there but t=0 is y2. You can find the positive solution using fzero,
>> fun=@(t) tan(t)-2*t; [T,fval]=fzero(fun,3*pi/8)
T =
1.1656
fval =
4.4409e-16
The other solution is -T, due to the symmetry of the functions.

类别

Help CenterFile Exchange 中查找有关 Systems of Nonlinear Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by