Epsilon Algorithm for Computing Padé Approximant

3 次查看(过去 30 天)
I am looking for a MATLAB implementation of the Epsilon Algorithm (theorem 1 from here). When I look at the Wikipedia page for Padé approximant, I find this quote: "For given x, Padé approximants can be computed by Wynn's epsilon algorithm[1]...". The Wikipedia article links to the epsilon algorithm paper. I am wondering if anyone has ran across this in MATLAB somewhere?

采纳的回答

Ze-Zheng Wu
Ze-Zheng Wu 2023-7-4
Not sure whether you still need this but also for whoever wants to use Wynn's epsilon in MATLAB, here is the code:
function res = wynn(s)
% Step 1: Check length of s and adjust if it's even
n = length(s);
if mod(n, 2) == 0
s = s(1:end-1);
n = n - 1;
end
% Step 2: Initialize the epsilon matrix A with s on the first column
A = zeros(n, n);
A(:, 1) = s;
% Step 3: Compute the remaining columns using Wynn's method
for j = 2:n
for i = 1:(n - j + 1)
if j == 2
A(i, j) = 1 / (A(i + 1, j - 1) - A(i, j - 1));
else
A(i, j) = A(i + 1, j - 2) + 1 / (A(i + 1, j - 1) - A(i, j - 1));
end
end
end
% Step 4: Return the last element in the last column as the estimate of the limit
res = A(1, n);
end

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by